Java for Bioinformatics
and Biomedical
Applications

Harshawardhan Bal
Johnny Hujol

JAVA FOR BIOINFORMATICS AND
BIOMEDICAL APPLICATIONS

JAVA FOR BIOINFORMATICS AND
BIOMEDICAL APPLICATIONS

by

Harshawardhan Bal
Booz Allen Hamilton, Inc., Rockville, MD

and

Johnny Hujol
Vertex Pharmaceuticals, Inc., Cambridge, MA

@ Springer

Library of Congress Control Number: 2006930294

ISBN-10: 0-387-37235-0 e-ISBN-10: 0-387-37237-7
ISBN-13: 978-0-387-37237-8

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LL.C

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed in the United States of America,
987654321

springer.com

Contents

Foreword IX
INtrOAUCHION ...t s e e srre e sbe e s te e e sre e e sane e entaesnreeans IX
Background and hiStory.......ccccoovirceveviniiniii IX
Interfaces and StANAardscoovvviiviereenireee e X
Java as @ Platformo.icveveeciviiniireneniie et X
THE FULUIEvvevviiirieereecr et vie e ebre s s bt e s e stressseeseneeabaeenssassssens X1

Preface XIII

Chapter 1 1

Introduction to Bioinformatics and Java 1
The Origins of Bioinformaticsovveivciinienerenininneeneneeneeneseseeeeneens 1
Current State of Biomedical Researchcccoooeeeiviiiciiiiiiiic e, 3
The cancer Biomedical Informatics Grid program.........cccoociiniiiienneonnnns 6
caBIG™ Organization and Architectureccccovviniiciiiiiiicnicnicnnenn, 7
The Model-View-Controller Frameworkcccccovvcivivviecnvencinneeeenceeennnes 9
Web Services and Service-Oriented Architecturecocoveeveceiveecnnennn, 10
L0F: T € 5 T I U U OO PO PRSP 11

Let’s look at each of the tools in turn and understand how they sub-
serve or address a small component of the bigger research problem.14

CAAITAY .ottt s 14
CaWorkbench ... 16
RPIOtEOMICS ...ucvinreieirene e 17
CPAtN oo 17
CaTissue Core, caTissue Clinical Annotation Engine and caTIES...18
CaTiSSUE COTE...ccvirriiriririeeetee e e s 18
SUIMIMALY ..coviiireiiiree ettt bbb 20
Questions and EXEICISES . ..ciciviiireiiiiniireeroeeniinesieesssesssensscsnesssessssnssssees 21
Additional RESOUICES......evirvererrirrirericie it nes 21
Selected Reading..........ccoveeiiiniiceennniins e 23

Chapter 11 25

V1

Introduction to Basic Local Alignment Search Tool 25
The Purpose of BLAST ..o sreree e 25
Performing @ BLAST AnalysiS.....cooveviiiiniinnicnins e 27
Developing the SwingBlast Application.......ccevvnienvninrenisineeseneenes 32
Designing the SwingBlast Java Application..........cccvvevvrecreireereennenen. 35
Java Event MOdel ..ot resne v 36
Adding Events to AppliCatIOnSovvcverevrerinenieeeenieeseeeeseesieessenes 37
Designing the SwingBlast GUL..........ccooveviiinneniiinereee e 39
Coding the SwingBlast GUI ..o 45
Coding the SwingBlast Business Logicc.coovevvvnrniininnivienenieen 48
Determining Sequence Type: Nucleotide or Protein?ccoccoevenniins 53
Displaying Valid BLAST Optionscccecvvneniienininencneneeecnenens 63
SUITUTIATY <ottt et sttt a st scenens 80
Questions and EXErCiSES.....ccuiiiiiieiieecieineeeniee e srescresesreeesnneeneees 81
Additional RESOUICES.........eceriirieieirieiertreeee s svesre e 81
Selected Reading.......ovcvveverinineniiininesininrerriesiesaesesiesessessassesaessensens 81

Chapter 111 83

Running BLAST using SwingBlast 83
INErOAUCHION ...t e s 83
The NCBI QBLAST Packageccovvveeririeirieeeeecere et cesaevessesesens 83
Strategy for Creating a QBlast Based SyStemc.cccoviicrinniiiiinenecneeenas 84
Designing the BLAST AP ...cc.ooviiiiiii et 86
Description of Blast CLassesc..cccvueverereeniinieiieneiesineneseesieeeseseenennes 88
Implementing JOBIASt.........c.occcenmirienc e 92
Enhancing the SwingBlast Application.........cceccecvvnincnnncinceenen 103
Retrieving Sequences From GenBank Using BioJava........ccccooeenneee. 124
Retrieving GenBank Without BioJava.........cccconiiininiicnnnn, 129
Input Validation ... 132
Controlling Program Events and Responses.........c.ooceceiniiecienenenn, 137
Reporting BLAST Statscccoveeeineinieieeseeee e e 139
Displaying BLAST Results Interactively.......coceccevnincvnnninereenennenns 143
SUIMIMATY .ceeiiriirerrerer et et sttt bbb sbe e b b ebesbees 151
Questions and EXEICISES . ..ciiviiiiiiririiiicriei i s seeseeesveecteesressres e s vaeens 152
Additional RESOUTICES....cccorviiiiiiiiiriereireseeeeneseniesnseesreesaessensesssessens 152
Selected ReAdiNg......covovviiiiiiiicecrecceeneeeee e 153

Chapter IV 155

Facilitating PubMed Searches: JavaServer Pages and Java Servlets155
INErOAUCHION ..eiviiiieciieteee e re e bbb s reetr e e e aeeeaneeaseen 155

VII

HTTP and CGI......oooveeeeveeivereenne
HTTP Protocoloccouveeeivvinnivinerceins
GET and POST Methods..................

CGI For Generating Dynamic Content........coovoviiiienininin e,
Servlets and JavaServer Pages Technologies.........oocoovviiiiinniininnnn,

Java API for Servlets and JSPs.........

JavaServer Pages Standard Tag Library (JSTL) ..o

Apache Tomcat Serverccceeeenene.

The NCBI PubMed Literature Search and Retrieval Service..............
Accessing Biomedical Literature Through Entrez ..o
Create Web Application With Servlets and JSPs ..o,

Web Application Structure

Creating a Servlet to Access Biomedical Literatureccccoeeee.

Displaying PubMed Abstracts

Highlighting Search Terms in Retrieved Abstracts.........ccovvneenn

SUMMATY ..oocverrirrereenierrerencesnenrenreenes
Questions and EXercises.......ccocovienn.
Additional Resources.........ccocvevvennene
Selected Reading.......ccocoeveercvinnennennn,

Chapter V

Creating a Gene Prediction and BLAST Analysis Pipeline

Introductionccoeeevreiiniiien,
Gene Prediction Programs................
DNA Transcription and Translation

Gene Prediction with Genscan.........
Running Genscan Analyses..............
Analyzing GenScan Output..............

Creating SwingGenscan

Writing the Code for SwingGenScan ...,

The SwingGenScan User Interface..
Running SwingGenScan...................
SUMMATY ..eovvrirrenrercrerrernsesesnesnenes
Questions and Exercises........ccceeuen.
Additional Resources.......ccoccvuvrvennenns
Selected Reading........ccocovvevivniinennne

Chapter VI

cancer Biomedical Informatics Grid (caBIG™)

cancer Biomedical Informatics Grid

155
156
157
157
158
159
160
160
161
161
165
167
169
178
193
204
205
206
206

209

209
209
209
210
212
213
215
221
222
235
243
246
247
247
247

249

249

Vil

Structure and Organization of caBIG™ ..o, 250
Data Integration and ETL.........cccccoivinoninicinnencesineneneesenneeveasens 253
cancer Common Ontologic Representation Environment (caCORE) 255
Cancer Bioinformatics Infrastructure Objects (caBIO).......c.cccevvuennen. 257
Downloading and Configuring caBIOc..ccoovniiniiniininiee 259
Creating the JcaBIO Application.........ccccvenrererienecneeneenesreeresceasresseesaens 260
JcaBIO Classes and Application Structureccoceeveneenenenececeeenens 261
Coding the SwingCaBIO Applicationccceevrrenevecnernneinerenenenn. 263
Coding JcaBIO: The CaBIOReportEngine Classcccoveeneeieercncnnen. 275
Coding JcaBIO: The CaBIOSearchEngine Class.......cccoceeveevinrereecnee 282
Running the JcaBIO Application..........ccccovnivivinniinnininns 286
SUIMMATY «eveiviieieineeee ettt e et enes 289
Questions and EXErCiSes ... ccciiiiiiiiriiinrieiiinreecreiin e sine s snesssessens 290
Additional RESOUICES...c.cocerirereririeiccrr e 291
Selected Reading.......oceverreneeernniini et eeeseesee s 292
Appendix 295
Apache Ant and Tomeat...........cooeoiviciennie e 295
Downloading the Apache Tomcat SEIVELeeceviveririereeririr e 295
Managing the Apache Tomcat Server.....ovvviiniiinennes 302
Installing and Configuring the Apache Ant Build Tool..........ccceeeie 306
Configuring environmental variables for Ant........cccocvvvinivnnieeneenne. 309
Building and Deploying The Web Application..........ccecceeevecineeenns 310
Building the WAR filecocoviniinnicn e 310
Deploying the application on Tomcat using Ant 312
Version Control SYStEMS ..o 314

Additional Resources 315

Foreword

April 2006

Introduction

Bioinformatics is at a crossroads. We work in a field that is changing
every day, increasingly moving from specific solutions created by single
researchers working alone or in small groups to larger, often
geographically dispersed programs enabled by collaborative computing
and open software. This book represents an important development, giving
the reader an opportunity to discover how the use of open and reusable
Java code can solve large bioinformatics problems in a software
engineered and robust way. I work with one of the authors of this book
every day, on the National Cancer Institute’s cancer Biomedical
Informatics Grid (caBIG™) project, and I can attest that they are well
suited to share with their readers both their experience in the development
and use of bioinformatics software, as well as their interest in solid
software engineering and interoperability.

Background and history

In its short history, bioinformatics has become an increasingly important
part of how scientists involved in biological research go about their work.
This has lead to an explosion of interest in the subject, and a similar
explosion in tools and data resources for researchers to learn and use in
their work. Historically, tools for bioinformatics have been idiosyncratic
and are custom-developed by the end-users (or those close to them) in an
iterative fashion until the specific immediate problem is solved. This has
led to a balkanization of informatics systems, sometimes yielding multiple,
incompatible systems at a single institution for a single application. This
trend is beginning to change, with groups throughout the research
community developing standards and shared data models, in areas ranging

X

from gene expression arrays to pathways and proteomics. With a range of
emerging software capabilities and a growing interest in interoperable
tools and standards, bioinformatics practitioners have an ever-expanding
toolbox from which to draw on to develop the basic software infrastructure
behind their work. Similarly, with the increasing interest within the
biomedical informatics community in the use of well-defined software
engineering methodologies, and disciplines like design patterns and model-
driven architecture, the software developed there will increasingly last
longer, be easier to maintain, foster interoperability and reuse, and
ultimately be more robust and cost effective.

Interfaces and standards

Interfaces and standards, as well as the use of well established
development platforms, especially object-oriented programming, allow the
bioinformatics practitioner to solve problems faster, with fewer lines of
reusable, well-documented code than before. Through access to and study
of well-established principles of software engineering and computer
science, the solutions to problems in biomedical informatics will also be
solid and optimally designed. With the increasing size of the datasets used
in biomolecular informatics, derived from all manner of new high-
throughput technologies and online databases, it is increasingly important
to use thoughtful, efficient and well-established algorithms in the analysis
of that data. Informatics students who can decompose complex,
biologically significant informatics problems into simpler models, for
which there are corresponding, validated and pre-existing software objects,
will be amply rewarded for their efforts. It is by building on well-
supported software platforms, using established and tested methodologies,
that the most favorable balance can be achieved between effort and
benefit.

Java as a platform

This book will teach you ways to make use of the Java programming
language as a platform for your work in biomedical informatics, and in
doing so, will open you up to the possibility of using a wide range of
software objects in use throughout the large software engineering and
computer science communities. Java is, of course, not the only object-
oriented platform that is appropriate for bioinformatics. Perl is very well

XI

established, and are python, C++ and many others. The lessons that you
can learn in Java are transferable to any object-oriented system, and Java is
proving to be a solid platform for work throughout the informatics
community. In the caBIG™ project that both Harshawardhan and I are a
part of, Java is one of the main (but far from the only) programming
languages used in that project. As a result, there is a lot of infrastructure
available in the form of open-source code and open-content resources that
are available for the busy researcher, serious student, or interested
hobbyist. The latter chapters in this book detail how to connect with and
make use of those resources to solve your own informatics programs.

The future

Through the efforts of a global community of biomedical informatics
researchers, and through the prevalence of the Internet, it has become
possible for any interested person to learn enough about biology, software
engineering, and computer science, to contribute meaningfully to the
emerging science of informatics. With the amount of openly available raw
biological data growing by leaps and bounds every day, there is every
reason to believe that you can contribute too, and the book that you hold in
your hand is a great way to join in. Bon voyage!

Mark Adams

Program Manager

NCI Cancer Biomedical Informatics Grid (caBIG™)
Booz Allen Hamilton

Rockville, MD

Preface

On April 15, 2003, the International Human Genome Sequencing
Consortium (IHGSC) — an association of laboratories from around the
world which had jointly undertaken the Human Genome Project formally
announced the completion of the colossal task they had set out to
accomplish: the sequencing and assembly of the 3 billion bases that
comprise the human genome. This was a truly landmark achievement for
science and medicine. Today, the word “genome” has become a household
term and together with bioinformatics has revolutionized how we approach
biomedical research. The human genome project has led to identification
of thousands of disease genes and paved the way for the development of
newer drugs and treatments. Undoubtedly, the sequencing of the human
and other genomes is just the beginning of the revolution that is unfolding
right in front of our eyes. We are moving towards a paradigm shift in
medicine, from just-in-time treatment that is given after the onset of
symptoms to predictive and personalized treatment where the
determination of the genetic factors predisposing an individual to disease
is made right at birth and treatment started much before the onset of
disease.

There is also a fundamental shift in how biomedical research is
going to be conducted and funded in the years to come, especially, in areas
such as cancer research and heart disease where there is a critical need to
bring newer and better treatments for patients. Cancer has passed heart
disease as the number one killer in UK and US and has been recognized by
the World Health Organization as a major health problem across the globe.
To meet this challenge, the US National Cancer Institute (NCI) has
launched the biggest collaborative research program in 2003 called the
cancer Biomedical Informatics Grid (caBIG™). In the words of NCI
Director, Dr. Andrew von Eschenbach, “...caBIG will become the ‘World
Wide Web’ of cancer research informatics and will accelerate the
development of exciting discoveries in all areas of cancer research”, Thus
started the journey towards the NCI Challenge Goal, “To eliminate the
suffering and death due to cancer by 2015 and together with it the efforts

X1V

of more than 50 NCI-designated cancer centers, scores of research
laboratories, Universities and public and private institutions across the
country.

Where does J2EE come in the picture? The healthcare and medical
research enterprise that we see today with its complex distributed Internet-
enabled architecture is dependent on technologies that provide the critical
infrastructure components necessary to fulfill its patient data safety,
security and regulatory compliance requirements. Java has emerged as a
powerful programming language for developing secure, scalable and
robust web-enabled applications and is particularly well suited for building
the many interrelated components of the geographically dispersed
biomedical research and business engine. Together with support from a
number of open source standards, J2EE offers a number of advantages for
such applications and is the major platform for development efforts under
caBIG™.

Why now?

We were confronted with this question early on in the writing of
the book. The answer lies in the way the biomedical research enterprise
has been transforming itself over the past decade or so and in doing so,
promising to revolutionize the way we provide patient care. caBIG™ is
based on the principles of open source, open access, open development and
federation and uses J2EE and open source technologies for all software
development efforts under the program. CaBIG™ is perhaps the next
major landmark in the making in the history of biomedical research.
Consequently, the time for a closer look at J2EE and open source
technologies in a way that combines industry standard software
engineering and design principles, genomics, bioinformatics and cancer
research, is ripe.

This book is an attempt to fill that critical need. The main
differentiating feature of the book is its focus on creating and integrating
practical, useful tools for the scientific community in the context of real-
life, real-value biomedical problems that researchers encounter on a
routine basis. The book leverages technologies for molecular biology,
genomics, bioinformatics, clinical research and cancer research developed
by the National Cancer Institute Center for Bioinformatics (NCICB), the
National Center for Biotechnology Information (NCBI, a division of the

XV

National Library of Medicine (NLM) at the NIH), and scores of research
organizations across the nation.

The book begins with an overview of the state of biomedical
research today and the challenges it faces due to the silo model that has
perpetuated over decades across universities and research centers across
the world. It establishes a case for and the rationale behind the current
move towards integrative, collaborative and standards based research
platform through an introduction to the NCI caBIG™ program. It next
provides an overview of emerging architectural trends such as Web
Services and Service-Oriented Architecture. The book is not as much
about the J2EE platform as it is about its application to building vseful
software and does not dwell on the theoretical aspects of the language or
the platform; the authors (as well as the readers) recognize that several
excellent works on that topic already exist. Instead the uniqueness of this
book is that after just a short introduction, it takes a deep dive into
demonstrating how to build highly functional graphical user interfaces for
common and widely used bioinformatics tools that most researchers are
familiar with and find indispensable for any kind of research activity. The
reader is led through a step-wise and incremental software development
approach with two goals in mind — to demonstrate a systematic standard
software engineering approach to application development and, to activate
a thoughtful design process in the mind of the developer that is aimed at
exploring ways to enhance the functionality and usefulness for end-users.
The applications that are considered the backbone of modern genomic and
bioinformatics-driven research — Basic Local Alignment Search Tool
(BLAST), Genscan gene prediction tool and others are used to illustrate
this process. The reader will notice a significant amount of code in this
book and realize that this is so by design. Although there are many ways of
architecting a solution for a particular problem, we have illustrated one
such approach while encouraging users to build their own. In doing so, we
have also attempted to promote the reuse of tried and tested code from
existing software libraries based on open source projects such as Apache,
BioJava, caBIG™, and others.

Another differentiating feature of the book, best described by a
reviewer, is we “...take a gradual and applied approach to combining Java
and Bioinformatics”. This statement, in fact, represents the very fabric of
our strategy. By the same design, we have devoted little time on describing
features and individual programming elements for which excellent and
easily accessible documentation already exists. Our approach has also been

XVI

to create pipelines where two applications are combined together along
logical workflows that researchers normally use in their research
environments to produce an enhanced application that has more utility than
the individual applications.

The book does not profess to be the comprehensive tome on J2EE;
instead, it is designed to cover a few of the important topics that lend
themselves to use in the situations that are commonly encountered in this
domain. It is hoped that a more focused approach would lead to a better
and clearer understanding of the core capabilities of the platform than
would be achieved by a lengthier treatment of the subject that cover all its
different aspects. Indeed, the vastness and the complexity of the
biomedical space and the pace and profundity with which science,
technology, policy and legislation affect it is at times daunting. The
authors acknowledge the challenge of writing on a topic this difficult and
hope to address the concerns of the readers of this volume to identify gaps
and produce a more inclusive title while providing time for the emerging
technologies described in this book and others beyond the scope of this
book to mature and gain wider acceptance by the user community.

With this background in mind, the book is especially tailored
towards graduate students majoring in computer science, or information
technology and who intend to take up carecers in architecting software
solutions for biomedicine and healthcare. It is also meant for practicing
professionals who are actively involved in developing, maintaining or
enhancing biomedical software and need to remain on the cutting edge of
trends and standards in medicine and information. Finally, it will also be
useful to molecular biologists, life scientists and clinicians who have a
strong commitment towards understanding how software technologies can
be put to use in solving the unique demands presented by the modern post-
genomic translational research landscape.

This work would not be possible but for the many people who
helped us get our thoughts together and organized to this point. We thank
the many initial reviewers of this book who represent both private as well
as public companies and research organizations including thought leaders
in the field, many of whom are closely associated with the latest
movements in information and biomedical technologies, and in their
application to initiatives such as caBIG™ . We thank Dr. Mark Adams, the
caBIG™ Program Manager, for his wholehearted support for the book
from concept to conclusion and for lending his expert insight into the

XvII

future of biomedicine as captured in the Foreword for this book. We thank
the good people at Springer — especially, Joseph Burns and Marcia Kidston
and their team — for sticking with us throughout the process and coming to
our assistance whenever we had the slightest of troubles. We also thank
our individual families — the grown-ups (our wives) Nathalie Hujol and
Snehal Bal, and not so grown-up (Arnav Bal, just 3 at the time of this
writing), who knowingly or unknowingly - but by no means reluctantly —
allowed us both to pursue this adventure and leave the life outside our
small world for the better part of the 2005-2006 to flourish without our
intercession for the most part.

To all our readers — whether you are an end-user or a developer, a
biologist, a clinician or a bioinformatician or, indeed, one of the many
documented cross-disciplinary “hybrid professionals” - we hope this book
serves the small but meaningful purpose we began with in our minds and
that it provides a vignette into the fast and exciting world of biomedical
research. We value your feedback and will continue to incorporate your
suggestions and work hard to meet your expectations in partnership with
you throughout the lifetime of this book. We hope to hear from you!

Bon chance and bonne journee.

Harshawardhan Bal
Johnny Hujol

April 2006

Chapter |

Introduction to Bioinformatics and Java

The Origins of Bioinformatics

On April 15, 2003, the International Human Genome Sequencing
Consortium (IHGSC) — the association of laboratories from around the
world which had jointly undertaken the Human Genome Project (HGP)
formally announced the completion of the project and the colossal task that
lay at its core: the sequencing and assembly of the more than 3 billion
bases that comprise the Homo sapiens (human) genome. This is a truly
landmark achievement for science and medicine. According to Nobel
Laureate James D. Watson, President of the Cold Spring Harbor
Laboratory, "The completion of the Human Genome Project is a truly
momentous occasion for every human being around the globe." In the
words of Elbert Branscom, Founding Director of the Joint Genome
Institute (JGI), "We will see everything before this like the dark ages of
biology”.

The HGP has had wide ranging implications on every aspect of science
and medicine. As a result of the HGP, scientists have mapped the DNA
hieroglyphic of the human genome to an accuracy of 99.99 percent and
have estimated that human life and all its molecular, cellular and
organismal machinery is programmed by 30,000 odd individual genes. It
has given birth to Bioinformatics - a new scientific discipline at the
crossroads of biology, medicine and information technology and provided
an impetus for the rapid development of the fields of Genomics (the study
of the genome) and Proteomics (the study of the entire complement of

proteins expressed by the genome). Along with the sequencing of the
human genome, the sequencing of model plant and animal genomes such
as Arabidopsis thaliana (thale cress), Caenorhabditis elegans (worm),
Danio rerio (zebrafish) and Drosophila melanogaster (fruit fly) has led to
the development of fundamentally new discovery approaches and
technologies that promise to revolutionize medicine.

In the space of just a few years, we have taken a giant step closer to a
paradigm shift from “just-in-time” medicine (where treatment is provided
after the appearance of symptoms) to “predictive medicine” (where the
entire spectrum of disease susceptibility of an individual can be mapped at
birth and treated in advance of the appearance of disease). We are also
moving closer to an entirely new concept in therapy - "personalized
medicine” (as opposed to “generalized medicine”), where individuals
receive treatment with “designer” drugs that are tailored to suit their
specific genetic backgrounds, thereby maximizing therapeutic potential
and minimizing the occurrence of adverse events.

Why does one person respond to a certain medication while another
does not? Why do some women get breast cancer while others do not?
Why are some individuals more susceptible to an infectious disease than
others? These are the kind of questions that biologists are trying to address.
The next few decades will be completely consumed in research that leads
to answers to these issues. The need to analyze vast amounts of genetic
data has lead to the growth of powerful technologies that enable
researchers to study the regulation of tens of thousands of genes at the
same time. To be able to perform these information intensive tasks,
scientists and clinicians must be comfortable with both the biological and
the computational aspects of Bioinformatics as well as with the basic tasks
of retrieving, extracting, organizing, analyzing and representing the data.
While Per! and other scripting languages are preferred for day-to-day
analysis of biological data, they are not suited for creating enterprise-level
software. A robust Object-Oriented Analysis, Design and Programming
language such as Java is better suited for this purpose. The Java 2
Enterprise Edition (J2EE) framework provides the ability to develop
distributed, multi-tier applications that can be deployed and connected
over the web. J2EE is platform-agnostic, meaning that it can run on
virtually any platform. This is because the Java code is compiled into an
intermediate code called byte code, which is interpreted and executed by
the Java Runtime Environment (JRE) at run-time. Since JRE is available

Introduction to Bioinformatics and Java 3

on any platform, code once created in Java can be run on any operating
system.

In this Chapter, we will explore some bioinformatics applications that
have been written in Java in order to demonstrate the power of J2EE
technologies for creating biomedical software. In particular, we will focus
on applications that have been developed for cancer research that have
achieved the “industry standard” reputation in modern rescarch and are
actively being integrated for use in such cutting-edge research initiatives as
the National Cancer Institute’s cancer Biomedical Informatics Grid
program (caBIG™, http://cabig.nci.nih.gov/). In doing so, we will provide
an introduction to caBIG™ in this chapter and discuss how the different
tools and applications that are being built or are being brought under the
caBIG™ umbrella are helping solve the many bottlenecks in biomedical
research.

Current State of Biomedical Research

Traditionally, biomedical research has been (and is still being)
conducted in laboratories around the world in relative isolation from other
laboratories, even if the subject of research may have been (or is) the same.
While this method of operation has over the decades led to a rich
collection of research data and many significant biomedical discoveries, it
has also led to the isolation of data and capabilities into independent silos
of information and expertise that lie locked in databases or within people
and inaccessible to the larger research community. In addition, since the
majority of individual laboratories have evolved their own operating
procedures, methodologies and vocabularies to suit their own specific
research problems, there has been a relative dearth of standardized ways of
conducting and reporting experimental data. The lack of standardization
and data sharing has proven to be a significant impediment to biomedical
research and directly affects our ability to design better and more effective
treatments.

Experts all over the world now generally agree that a better use of
research data, especially with the aim of enhancing the pace of biomedical
research for the benefit of the patient, is through open collaboration and
sharing. This approach eliminates duplication of effort and result in a more
efficient use of limited resources. This realization is especially significant
in the post-genomic era. Modern day high-throughput assay technologies

have given researchers the power to probe living systems with
unprecedented precision and depth. This has in turn led to the adoption of
a “systems” approach to research with an increasing trend towards
studying entire pathways, hundreds and thousands of genes and whole
organisms in one single experiment. However, this approach has also led
to an explosion of raw data. There is today an ever-increasing need to
connect this raw data into meaningful actionable knowledge that can yield
real insights into disease processes.

Another significant change is the realization that a more powerful way
of conducting research is to integrate data from multiple different fields of
study spanning basic (laboratory-based) and clinical (patient-focused)
research. This new approach called “Translational research” requires a
team approach between physicians, scientists, bioinformaticians,
statisticians and a host of other professionals working closely together
towards specific outcomes. This method of operation brings together the
cellular, molecular, biochemical, genetic and other biological aspects of
research together with a clinical understanding of disease that results in
practical outcomes of valuable clinical relevance. For example,
translational research on lung cancer may involve a team consisting of
molecular biologists, computational biologists and biochemists on one
hand and, thoracic surgeons, medical oncologists, radiation oncologists
and nurse practitioners on the other to understand basic disease
mechanisms and to improve patient outcomes.

The basic idea behind this approach is to assimilate as much
corroborating evidence as possible to test and validate a hypothesis rather
than dealing with separate isolated bits and pieces of raw data, which do
not point to a robust testable hypothesis. With the appropriate standards,
processes, policies and technologies in place, a researcher following a
promising lead, for example, a gene or a protein that is significantly
overexpressed in a specific cell population or in a laboratory model and is
suspected to play an important role in disease causation, can extend the
research in meaningful ways by:

1. performing experiments that prove that inhibiting protein
overexpression or inhibiting a specific step in a biochemical pathway
reverses the ill-effects of the abnormal protein expression or the
aberrant pathway

Introduction to Bioinformatics and Java 5

2. confirming that the results can be duplicated in biospecimens - that is,
samples derived from tissues obtained from specific human organs
(for example, lungs) possessing the same disease pathology and
characteristics, thereby extending the evidence in actual patient
samples

3. confirming that the protein is not present in normal non-target tissues
(for example, liver, kidney, etc.) to avoid occurrence of toxicity due
to a chemical agent being tested for interventional therapy

4. identifying patient cohorts who fit the study criteria and conducting
therapeutic clinical trials to test efficacy of known or experimental
agents for interventional therapy

The over or under expression of a biomolecule (typically a gene or a
protein) - that is, its presence in higher or lower amounts, respectively,
under a diseased condition (as compared to the levels that are observed
under normal conditions) is generally referred to as differential expression.
The differentially expressed protein in question can serve as a signature or
a fingerprint of the underlying disease mechanism and is the living
system’s response to an alteration in normal physiology caused by disease
or other external stimuli. Since it is a signal or a “marker” with significant
biological implications, it is called a biomarker. Biomarkers can be any
biomolecule - proteins, peptides, nucleic acids, carbohydrates, lipids,
metabolites, etc. - the concentrations of which may increase or decrease,
under specific abnormal conditions. An example of a biomarker is
cholesterol, which is commonly used to identify risk of heart disease.
Biomarkers can be assayed by standard biochemical methods and can be
used as indicators of disease states in diagnostics as well as provide targets
for therapeutic intervention. The application of biomarkers to diagnostics
includes the ability to diagnose and monitor disease, risk stratification,
disease prognosis, drug eligibility, prediction of safety and efficacy, and
therapeutic monitoring. The therapeutic aspect is equally important
because they provide a reliable readout of drug function and treatment
efficacy and therefore guide decisions on the clinical development of
promising drug candidates.

The research can be further extended by identifying patient cohorts who
fit the study criteria in clinical trials to test efficacy of known or
experimental agents that inhibit overexpression or otherwise reverses the
ill-effects of the causative protein. Of course, this is a rather simplistic

representation of an actual research scenario. The researcher may spend
months or even years studying disease causation in the laboratory
eliminating other suspected causative agents, sifting through literature and
accumulating data from studies performed by other scientists, mining the
available data using statistical and analytic algorithms, and iterating
through each of these steps till a model that fits the observed data can be
created with a high-level of confidence. In reaching this goal, the
researcher has to have access to the appropriate tools to identify relevant
research, assure that the data can be compared across experiments done
under different conditions or if not, apply the necessary manipulations
using appropriate tools, have access to those tools, and have the necessary
resources to identify tissues, experimental models or human subjects
locally or at other institutions. Such “bench to bedside” research can be
conducted only in a situation where data, resources, applications and
people are connected with one another and accessible via standardized
ways on a network or grid infrastructure. This is the rational and promise
of NCI's caBIG™ program,

The cancer Biomedical Informatics Grid program

caBIG™ was started by the NCI in July 2003 as a pilot project to create
a standards-based interoperable network of cancer centers across the nation
to increase data sharing and cooperation between biomedical scientists and
to enhance the pace of cancer research. The aim of caBIG™ is to integrate
bioinformatics, cancer informatics, tissue informatics, and pathology
informatics to create a network of data, applications and individuals who
can share data and tools seamlessly across geographical boundaries. To
cover the various aspects of the complex cancer research domain, caBIG™
is divided into four Workspaces - Clinical Trial Management Systems
(CTMS), Integrative Cancer Research (ICR), In Vivo Imaging and the
Tissue Banks and Pathology Tools (TBPT) Workspace. Simply stated,
caBIG™ is putting the “e¢” in cancer research, leading to an “e-research”
platform that integrates data and knowledge from basic (laboratory-based)
research to clinical (patient-based) research. To draw an analogy with the
term e-business that refers to the application of Internet technologies to
streamline enterprise business processes, caBIG™ is aimed at building the
infrastructure, processes and policies to make research data from multiple
research centers available via the web, handle secure transactions across
networks, support queries and secure information interchange between
distributed institutions, and enhance the efficiency of the cancer research

Introduction to Bioinformatics and Java 7

engine as a whole. Making cancer data available electronically over the
Internet enhances the speed of access to information, offers the opportunity
to globalize data access and interchange, enables access to the most up-to-
date data, enables researchers to adapt and quickly incorporate the latest
understanding of disease biology into their experimental designs, and
ultimately, to respond faster to critical patient needs and provide high
quality service.

While there are some parallels between biomedical research data and
business data, the two differ fundamentally in many respects, especially
with respect to data on patient related medical information. caBIG™
therefore has to create this e-research infrastructure in strict compliance
with applicable federal regulations for the protection of what is known as
individually identifiable health information that can be linked to personal
medical data and, if exposed, provoke the risk of misuse. In particular, the
privacy provisions of the Health Insurance Portability and Accountability
Act of 1996 (HIPAA), apply to and seek to protect patient health
information that is created or maintained by health care providers who
engage in certain electronic transactions, health plans, and health care
clearinghouses. A detailed treatment of the HIPAA rule is beyond the
scope of this book. Suffice to say that this federal law gives patients rights
over any personal medical data that health professionals and care providers
collect in medical records and sets rules and limitations around who can
receive and view their personal health information.

caBIG™ Organization and Architecture

As of this writing, caBIG™ had grown to a large enterprise consisting of
more than 70 individual projects, more than 800 individual participants
spanning greater than 70 public and private organizations. The caBIG™
enterprise has to support a complex interplay of customers (patients,
research investigators, clinicians, bioinformaticians, etc.), and federated
data (both text and image), services and analytic tools (data extraction,
organization, querying, mining, clustering and visualization tools) over the
web, while ensuring that it meets the necessary performance and capacity
requirements for such operations. By its very design, caBIG™ systems
need to be compatible with other systems on the network and make data
and services available irrespective of the type of web-based system or
device accessing caBIG™ resources. The caBIG™ infrastructure has to
provide fail-safe mechanisms to serve its resources in a continuous manner

without downtime for optimal benefit for the research community. The
need to access and distribute sensitive clinical, pharmacogenetic and
financial billing data under caBIG™ means that appropriate technologies
and policies must be implemented to assure privacy, confidentiality and
integrity of data, while blocking unauthorized access. These are just a few
issues that make the caBIG™ initiative such a complex undertaking. The
NCI Center for Bioinformatics (NCICB) has a key role in the making of
caBIG™ and is actively developing the critical infrastructure components
needed to address these requirements. Information on a sampling of such
tools, for example, the Common Ontologic Representation Environment
(caCORE) Software Development Kit (caCORE SDK), the Common
Security Module (CSM), caAdapter and others, can viewed at the NCICB
website at the following URL
(http://ncicb.nci.nih.gov/NCICB/infrastructure).

How does one design a secure and scalable solution for an enterprise
this large that covers all the pieces — the biomedical and clinical
organization, the computing infrastructure, including applications,
systems, servers, storage and the network - of a complex and distributed
modern research and healthcare environment? How can the various
building blocks or business components be assembled to deliver the
services and capabilities required to address the lifecycle needs of the
federated biomedical enterprise? The presence of data, services and tools
in a distributed manner and the requirement of data sharing between
organizations via the web means that we can no longer develop monolithic
applications with user interfaces that simply talk to a backend database.
Instead, the architecture has to accommodate a new design consisting of
several “layers” or “tiers” that may be present on separate physical
machines, operate independently of one another and subserve specific
functions. In effect, any number of such layers may be present and because
of the functional separation that the layer architecture provides, each layer
preserves its distinct identity and can be maintained without regard for the
implementation details of other layers. In effect, this design affords the
developer with immense convenience for use and maintainability because
entire tier implementations can be modified without affecting the rest of
the application. The users can in turn access the required resources in a
seamless and transparent manner. Such an architecture is called an n-tier
architecture. The n-tier architecture consists of several tiers that perform
the following functions - the display or presentation of data, the conduct of
business logic and the storage of data. These are commonly referred to as
the Presentation tier, the Business tier, and the Data or Persistence tier,

Introduction to Bioinformatics and Java 9

respectively. Fig. 1.1 below provides a graphical representation of this
model.

Presentation Layer Business Layer Persistence Layer
i—_ ’— Business Logic ’— Sl
=
M L Stored Procedures
Web Browser Transaction Management
5P Database Access Logic
Shuts
EB
MS SOL
. Oracle MySQL R

External (caBIG) Data Stores

cafRRAY
caBIG

B0 Data
Sources

Fig. 1.1. Components of an n-tier architecture

The Model-View-Controller Framework

A concept that is closely associated with the n-tier architecture is a
design principle called the Model-View-Controller (MVC) framework.
The MVC framework defines separation between the data (Model), the
visual component (View) and the communication that occurs between
them (Controller). There are a number of advantages of using such a
design.

The separation of components allows developers to prototype an
application and validate its requirements quickly. The view, for example,
can be designed and developed independently without affecting the design
of the rest of the application. It’s likely that the View will be modified
more often than the Model (the data) to adapt to the requirements of users
navigating through the user interface (UI). In addition, the way the Model
is implemented is fully encapsulated and transparent to the other parts of
the application.

10

The Controller handles the input that the View receives; it can then take
action to update the Model. The Controller can also inform the View to
update itself or the View can register itself as a listener of a Model, in
which case the View will update anytime the Model notifies its listeners.
This is the definition of the observer pattern where a View is the Observer
and the Model is the observable. The most important thing in MVC is to
keep the separation between the Model and the View. We will use this as a
guiding principle as we build our applications in subsequent chapters.

Web Services and Service-Oriented Architecture

The biomedical enterprise needs to transform itself from an unorganized
collection of data, tools and services into an interoperable, integrated and
standards-based model that allows the system and its users to interact with
a variety of business elements and invoke a variety of services along
logical workflows. Under this scheme, any machine located on the web
can be thought of as a provider of a consistent, reliable and defined
“service” that can be invoked in a repeatable and standard manner. The
Basic Local Alignment Search Tool (BLAST) server provided by the
National Center for Biotechnology Information (NCBI), for example,
provides a distinct service to a user — the ability to perform homology
searches with a given nucleotide of amino acid sequence. The Genscan
web server at MIT provides a different kind of service called “gene
prediction” or the identification of complete gene structures in genomic
DNA sequences. One can imagine the World Wide Web as made up of a
large number of such services that can be accessed via standard Internet
protocols such as HTTP, FTP etc. Each of these separate bits of
functionality is a service and in each case, a service consumer (user or
client) communicates and requests services from a service provider; the
service provider in return communicates back the service requested. Both
transactions (request and response) are carried out using messages that
both parties can understand. Messaging between the services can be
performed using the eXtensible Markup Language (XML). This is the
concept behind the emerging web architecture called service-oriented
architecture (SOA). The individuals services are connected together using
Web Services, which define a set of technologies that enable connections
between services.

The individual (web) services are self-contained, self-describing,
modular applications that can be published, located and invoked across the

Introduction to Bioinformatics and Java 11

Web as well as discovered by other applications on the web. Each of these
characteristics of a web service defines an essential component of the web
services platform:

1. The means to communicate (pass messages and data) between
services. This is usually achieved using Simple Object Access
Protocol (SOAP), which defines a uniform way of passing XML-
encoded data and a way to perform remote procedure calls (RPCs)
using the Hypertext Transfer Protocol (HTTP) .

2. The ability to dynamically locate other services present on the web
using a directory service. This is called Universal Description,
Discovery and Integration Service (UDDI).

3. The ability to describe what a web service can do, where it resides,
and how to invoke it. This is achieved through the Web Services
Definition Language (WSDL).

As is apparent from the above, web services must use interfaces based
on common Internet protocols such as HTTP and must use the XML
standard for messaging. Although a detailed description of the web
services platform and SOA is beyond the scope of this text, we will
illustrate how the caBIG™ grid architecture called caGrid addresses the
complex interoperability and integration issue we described earlier. We
will delve into caBIG™ and the technologies being developed under the
project in more detail in Chapter 6.

CaGrid

As mentioned briefly before, to make data interchange and collaboration
possible, NCI and the caBIG™ participating institutions are using a
number of technologies that the NCICB has been developing for the last
several years. These include, for example, caCORE, Cancer
Bioinformatics Infrastructure Objects (caBIO) and the Cancer Data
Standards Repository (caDSR). These technologies allow integration of
biomedical applications with a vast array of NCI data sources including
genomic, animal model and clinical data. The NCI has also formulated
compatibility guidelines to ensure that applications developed under the
caBIG™ umbrella can interoperate with one another. The caBIG
compatibility guidelines necessitate the use of controlled vocabularies and

12

terminologies, Common Data Elements (CDEs), well documented API and
Unified Modeling Language (UML) based object models to ensure
interoperability with other caBIG applications. caCORE, which is caBIG’s
principle software development platform allows users to create caBIG™ -
compatible systems using an in-built modeling tool and a code generator.

The caBIG™ grid framework or caGrid is based on the service-oriented
architecture model and open standards such as Open Grid Services
Architecture (OGSA) created by the Global GridForum (GGF) for grid
computing. The current version of caGrid as of this writing (caGrid 0.5) is
built using the Globus Toolkit 3.2 and the OGSA Data Access Integration
(OGSA-DAI) framework version 5.0. The Globus Toolkit provides
services and applications for the secure sharing and management of
computing power, databases, and analytic tools over the web across
organizational and geographic boundaries. OGSA-DAI component
provides the middleware needed for accessing and integrating data via web
services from the multitude of geographically distributed biomedical data
sources on the grid including relational databases and XML based
databases. Through the combination of these various components, caGrid
empowers the caBIG™ engine and its users to develop and deploy of
community provided services and API for building client applications.

Now that we have the basic background on caBIG™ and bioinformatics,
lets examine a few software applications that are currently being used or
are being developed under the caBIG™ program for oncology research to
illustrate what scientists, clinicians, bioinformaticians and software
engineers have together accomplished to address the needs in this area. We
will use the research scenario we had discussed earlier - the differential
expression of a gene and its product in a specific cell population or, in a
disease model that leads to the plausible hypothesis that it has a role in
disease causation - to provide examples of biomedical software
applications. Table 1.1 provides a breakdown of the translational research
scenario into discrete sub-components and lists out the corresponding
categories that apply to the scenario.

Table 1.1. Research use cases and corresponding categories

Research scenario Category

Introduction to Bioinformatics and Java 13

Analyze genes that are differentially expressed inGene expression analysis
a specific cell population or a disease model

Analyze proteins that are differentially expressed Proteomics
in a specific cell population or in a disease model

Analyze pathways that the differentially Pathway analysis
expressed molecules participate in

Query for and identify tissue samples located in Biospecimen inventory and
distributed biospecimen resources that match the annotation systems
clinical, pathologic, and experimental parameters

of the disease under investigation

Table 1.2 provides brief descriptions of the tools that we will introduce
in this chapter to illustrate a representative set of Java-based
bioinformatics applications. Also listed are the caBIG™ Workspaces under
which each of the tools are being developed.

Table 1.2. Java-based bioinformatics tools

Name of application CaBIG™ Description
Workspace
CaArray ICR Repository for managing, analyzing and

visualizing of gene expression data from
microarray experiments

CaWorkBench ICR Gene expression, pathway and sequence
analysis, transcription factor binding site
analysis, and pattern discovery

RProteomics ICR Statistical analysis, visualization m modeling
of proteomics spectra

cPath ICR Integration and analysis system for integrating
protein-protein interaction and molecular
pathway information from multiple sources

caTissue Core TBPT Core biospecimen management tool for
inventory, tracking and basic annotation of
biospecimens.

CaTissue Clinical TBPT Tool for addition of pathology annotation to

14

Annotation Engine stored biospecimens using data from Anatomy

(CAE) Pathology systems, Clinical Pathology systems
and tumor registries.

cancer Text TBPT Tool for extraction of pathology data such as

Information tumor histology, staging, molecular markers,

Extraction System etc., from free text surgical pathology reports.

(CaTIES)

Let’s look at each of the tools in turn and understand how they sub-
serve or address a small component of the bigger research problem.

CaArray

caArray is an open-source standards-based repository for managing,
analyzing and visualizing of gene expression data from microarray
experiments. caArray enables researchers to make their microarray data
publicly available to the larger cancer research community across
geographically separated research centers via a web portal interface as well
as through API. caArray uses a number of NCI technologies such as
¢aCORE, caBIO and caDSR. In addition, caArray is built upon a number
of caBIG"™ compliant standards for data exchange such as Minimum
Information About a Microarray Experiment (MIAME), MicroArray and
Gene Expression Markup Language (MAGE-ML), MicroArray and Gene
Expression Object Model (MAGE-OM) and uses controlled vocabularies
based on the Microarray and Gene Expression Database (MGED)
Ontology. caArray source code and API are available from NCICB for
local installation under an open source license.

MIAME is a set of guidelines that define the minimum set of data
that is needed to enable the unequivocal interpretation of the results
of a microarray experiment and to allow researchers the ability to
reproduce the results of previously reported experiments. The
guidelines include elements of microarray experiments such as aim
and brief description of experiment, conditions under which the
experiment was carried out, experimental design, quality control
procedures used, the experimental protocol used, protocol and
conditions used for hybridization and processing of the array, data
normalization, extraction and processing protocols, etc.

The MicroArray and Gene Expression (MAGE) group aims to provide a
standard for the representation of microarray expression data that would

Introduction to Bioinformatics and Java 5

facilitate the exchange of microarray information between different data
systems. This is being done under the aegis of the Object Management
Group™ (OMG™), an international not-for-profit consortium defining
standards for distributed object computing and interoperable enterprise
applications. This has led to the establishment of a data exchange object
model (MAGE-OM) and data exchange format (MAGE-ML) for
microarray expression experiments. The purpose of the MGED Ontology
is to provide standard terminology for the annotation of microarray
experiments and to enable unambiguous descriptions of how the
experiment was performed.

caArray is available for download at the NCI website at the following
URL: http://caarray.nci.nih.gov/. Fig. 1.2 shows the outcome of a query run
on the caArray web portal for an experiment performed by investigators on
the classification of complex diseases such as Diffuse large B-cell
lymphoma to identify targets for interventional therapy.

“3 Experiment Detail Page - Mezilla Firefox
Fe © Vew G0 Bochmals Took Heb o

» - 9 h;:\. L0ttt il refiasrappespaimert Dt Pagatition |EATEERARAT] ~ Qe G

MOME | LOGIN | REGISTER
3 BEARLH EXPERTFENTS
“ SEARCH PROTOCOLS i . ff | [} adicti
© EARCH HARDWARE Experiment: Diffuse large B-cell lymphoma outcome prediction
< HEARCIE SOFTWARE
< HEARCH ARRAYS
< SEARCH ARRAY DESIGNE CENS JT INFORMATION
 EARCH DS ARELL Vitle: Diffuse large D-cell lymphoma sutcome prediction
o BUARCH LADELED UNTMALTS Tdentifier: gavanihnel neieh, 5897
. Esperiment Bator /1401
Experiment Design Type clinlcal_histary_design, disease_state_dosign,
Vinibility Fublic
Liffupe large D-cell lymphoma (BLBCL), the
s in adults, is :nr-ble in Inss than 50% of potients. Prognastic models based on
CaAKRAY WEBSITE urestreslment such s the Index (LP1),
are currently used to predict nutvome In DLBCL However, clinical mnz-llu'
S PNE mwdels ideatify neither the molecular basis of cinical heterogeneity, ao
specific targets, We d the of 6,017 uul |n
dhlmlslll. Lot specimens |ram DLECL p-uslb , wh received
Ant ndl p {EHOP)- hasrd
flmal af the and anwl:l a slmrws:d iurmw pradichian mnlswi to identify
edpenment: cnred Uemﬁm I o dige. The

¥
calegories of pallnnLr. willy wary Mnmnn Hive-yoar overall nnnlul nnm (T
wersis 1) The model alsn sffectively delineated nmnu within spreific 1P1
risk catogories who warn likely to he curnd or 1o din of their disease. Geoes
l'lblll:m. in DLUCL outcome included Samme. that J‘!MM respanses 1o

critlial pathways
and apaptosis. Dur data indicats that supervised learning classification
technlyues can predict sulcome o DLECL and ientify rational targets for
Iterventicn

B

Principal Investigatar: Tadd Golub
Contact Persen: Margaret A Shipy

%

Fig. 1.2. Querying the caArray web portal for information on Experiments

16

Fig. 1.3 shows the results of a query to identify frozen samples
(Biosource type) of type “cell” with name “lung” for organism “Homo
sapiens” (that is, human samples) supplied by NCI.

< Search Bivsources - #ozilla Firefox IR
Fla EGL Ve G0 Gochmaks Tock el (4]

™ ﬁ‘ X l"\ﬁ L) rietpefagersydbundnin govicase rapises chSnsouenes dotmade=resiSasnh v B |IGL

i

HOME | LOGIN | REGISTER

Hamenal Biosaurse
<l -
Type o W) Typ=
Organiam | eme sapiens S| | orovigar | [WCi

Sinsourne

s * flung
demm |

Saarch

SEARCH RESULTS

¥ ttmene found, displaying all Sems

Haterial Type Draaniem Description

Ed Heme saphans

101z Lung cell ine zeas zed Heme sapiens
2 Lung call ine HZ3a7 ce Home saplans
ez Lung callline HE34F =l Hema sapiens
g86c_Luna ¢all ling HI437 e Hemo sapiéns
‘7 Lung ool fine HECTA i Homn sapiens
%25 gl hne HEOGS ot Homo sapiens.
canlt Hafrio 4apinns

s Hamfio sapiens

COKTACT US DRIVACY NOTICE CISCLATHEN ALCESSIRILITY APPLICATION SUDPORT

Fig. 1.3. Querying the caArray web portal for information on Biospecimens

CaWorkbench

caWorkbench is a suite of tools for loading, visualizing and analyzing
gene expression data and provides the capability to integrate data of
different types and from across a number of research institutions.
caWorkbench is written with the Java programming language, uses the
Java SWING libraries for creating the user interface. It runs on any
platform that supports Java 1.5 including Windows XP, Solaris, Linux and
OS X 10.5. The software is built on a component based architecture where
each feature within the application such as pathways, annotation,
expression profiles, etc. is available as a separate component that can be
loaded individually when the application is started. caWorkbench is
designed to retrieve data from the caArray database via the MAGE-OM
API, and utilizes NCICB’s caBIO API to access genomic, cancer models,
molecular pathway and clinical trials information. caWorkbench is

Introduction to Bioinformatics and Java 17

available for download from the NC1 website at
http://ncicb.nci.nih.gov/download.

RProteomics

The goal of the RProteomics project is to build open-source tools and
develop standards for proteomics data analysis. As described earlier,
Proteomics is the systematic study of the complete complements of
proteins expressed by the genome. While gene expression is a study of the
process of gene transcription (the synthesis of RNA from DNA),
proteomics is the study of the process of gene translation (the synthesis or
expression of protein from RNA). The protein machinery constitutes the
signal transduction mechanism of a living cell or organism and is
responsible for much of the physiological processes that sustain life.
Proteomics is therefore a powerful tool in the arsenal of the biologist in the
pursuit of molecular mechanisms of disease. Proteomics encompasses the
determination of protein expression levels, protein-protein interactions,
protein localization, and regulation by post-translational modifications,
etc., ultimately to decipher protein function. The basic methodology in
proteomics is the separation of proteins in a sample by gel electrophoresis,
extracting the proteins of interest and followed by mass spectrometry (MS)
to determine their identity and characteristics.

RProteomics derives its name from the open source R software
environment that it uses for statistical analyses and visualization of
proteomics data. In the future it will also provide a proteomics repository
and access to proteomics data via web services. RProteomics includes
statistical routines to analyze spectrometric data including algorithms for
background curve determination, denoising, peak calibration,
normalization of peak intensities, and predictive modeling. RProteomics
supports the mzXML proteomics data standard and the MIAPE (Minimal
Information About a Proteomics Experiment) standard, the latter of which
is being developed by The Human Proteome Organisation Proteomics
Standards Initiative to standardize data representation in proteomics and
facilitate data comparison and exchange.

cPath

The cBio Pathway Information Resource or cPath is an open source
pathway integration and analysis system for integrating protein-protein

18

interaction and molecular pathway information from multiple sources. It
also provides data visualization and analysis functionality via Cytoscape,
another open source platform for visualizing interaction networks and
integrating them with gene expression profiles. CPath provides access to
data via a standard web service query interface that connects with a
MySQL database backend as well as a HTTP based web service. Java and
is based on a 3-tier architecture using Java servlets and Java Server Pages
(JSP). We will learn more about the Java servlets and JSP technology in
chapter 4. Briefly, servlets and JSP provide a server and platform
independent mechanism to create web-based applications that can serve
dynamic web content.

CaTissue Core, caTissue Clinical Annotation Engine and
caTIES

The simple research scenario we outlined earlier assumes that
researchers can locate the biospecimens or tissues samples with the
matching disease pathology or disease parameters so to perform the
necessary follow-up and validation studies. For example, researchers may
want to query a database for biospecimens that have associated gene
expression data for a gene or set of genes that may be differentially
expressed under a specific disease condition. Under caBIG™, the
functionality to manage, annotate and identify matching biospecimens that
may be present in a federated manner in geographically dispersed research
institutions is being done through the caTissue suite of tools - caTISSUE
Core (not to be confused with caCORE), caTissue Clinical Annotation
Engine and caTIES.

These are some of the most advanced tools that are currently available
in caBIG™ in terms of the software development effort as well as in terms
of their adoption by a number of cancer centers and research institutions
across the nation. We will illustrate the development efforts behind the
caTissue Core application to demonstrate how the various elements of the
J2EE platform have been applied to create a robust application to facilitate
tissue banking operations.

CaTissue Core

Introduction to Bioinformatics and Java 19

As described earlier, the function of the caTISSUE Core system is to
serve as the base or core solution for biospecimen inventory, tracking and
basic annotation for use across cancer centers and other institutions with
biospecimen resource facilities. In addition, CaTissue Core establishes the
foundation of the TBPT object model that represents the tissue banking
and pathology domain. Together with the other TBPT applications —
caTissue Clinical Annotation Engine and caTIES, caTissue Core
constitutes what is called the caTISSUE system, the comprehensive suite
of tools for managing the life cycle events and operations of the tissue
banking and pathology information domain.

The caTISSUE Core application is comprised of an n-tiered architecture
(Fig. 1.4). The presentation tier consists of a web interface as well as HTTP
based Java API. The web application used Java Server Pages (JSP)
technology to serve dynamic web content. The HTTP API enable users to
access all caTissue Core functionality that is available through the web
based application. The web-based user interface is designed using the
Apache Struts framework following the Model-View-Controller (MVC)
Model 2 design approach. The Model 2 approach is a variation of the
classic Model-View-Controller (MVC) design paradigm we described
earlier. Applied to the Java servlet and JSP technology, under Model 2, the
execution of the business logic is managed by the servlet and the
presentation logic is managed by the JSPs. CaTissue Core also uses the
Tiles framework which specifies the layout of each JSP page using
templates and provides a mechanism to manage and reuse the various
visual components such as the headers, footers and navigational elements
of individual web pages. The caTissue Core business tier contains domain
objects and model classes where the tissue banking related business logic
resides. The Persistence tier is a local database for storage of tissue
banking data, as well as, external data sources such as NCI's Cancer Data
Standards Repository (caDSR) and Enterprise Vocabulary Services (EVS).

CaTissue Core provides two mechanisms for interaction between the
user interface and the backend data stores - through an Object-Relational
Mapping (ORM) tool called Hibernate and through the Java Database
Connectivity (JDBC) API. Hibernate is used to define the mapping
between Java classes to the tables in a relational database in order to
persist the objects in a relational database. JDBC API provide database-
independent connectivity and access to a wide range of SQL databases as
well as other types of data sources, including spreadsheets and flat files.
caTissue Core provides support for Oracle as well as MySQL databases.

20

The caDSR and EVS are a set of resources and tools to describe
biomedical data and concepts in standardized ways using Common Data
Elements (CDE) and controlled vocabulary, respectively. Access to these
services is provided through the caCORE APIL. We will learn more about
these resources in Chapter 6.

Chient Laver | Presentation Laverl Business Layer | Persistence Layer

Web Server | :
Domain Data Access |
l HTMLHEramewur& Dbjects DObjects [) !

| JDBC ~—| CaTissue

Web Browser Action —* Core
Serviet | | J " Database

5P Business EVS caDSR Hibernate
Engine I Logic Intetface

Java Apps «+—»0Objecte—» Til | caCORE NCICH
' fes > Tapr T *raDSR/EVS
Eng \ S Datahase

Fig. 1.4. caTissue Core n-tier architecture

Summary

This Chapter provides a brief introduction to The Human genome
Project, perhaps the single most important event in the history of medicine
after the elucidation of the double-helix structure of the DNA and to the
fields of Bioinformatics, Genomics and Proteomics. While computing
technology and software have played a fundamental role in the
advancements that medical research has made in the last few decades, they
have also led to problems in data quality. The silo approach that the
biomedical research enterprise has taken has led to isolation of critical
scientific expertise and knowledge, depriving patients of the benefits of
modern science. To correct these issues, and to bring speedier benefits to
individuals with cancer, the NCI in partnership with its Center for
Bioinformatics and a number of Cancer Centers across the country
launched the caBIG™ program with the aim of providing scientists with
the infrastructure and resources to better control, share, assimilate and
integrate data from disparate sources. The chapter also provides an
overview of the role that the J2EE platform has played in biomedical
research especially with the advent of the Internet age and the availability

Introduction to Bioinformatics and Java 21

of the WWW as a catalytic medium for the sharing of resources across

space. We also provided examples of a few software applications that

demonstrate the power of the J2EE platform

In the next Chapter, we will build on the understanding we have gained

so far of the state of and the challenges faced by the biomedical enterprise

and begin the exercise of understanding how software is built using the

J2EE platform. We will illustrate this by building an application using the
Java Swing library to run biological sequence searches using the NCBI
BLAST engine.

Questions and Exercises

Trace the origins of the Human Genome Project beginning from the
elucidation of the structure of DNA in 1953, What were some of the
landmark events and technologies associated with the successful
sequencing of the human genome?

Visit the caBIG™ website to learn more about its organization and
activities. Identify the main reasons behind the launch of the caBIG™
project. What are the technological and social hurdles that caBIG™
has to overcome in order to be successful? How will caBIG™
transform medicine if it meets its goals?

Compare HGP and caBIG™. What are some of the parallels you can
draw between the two projects? Think about how these projects
contribute to understanding of disease, especially cancer, and the
advancement of modern medicine.

What tools and technologies are being created by the NCICB and
participating cancer centers to advance the caBIG™ mission? What
role does J2EE play in this effort?

Additional Resources

Apache Struts - http://struts.apache.org/index.html

caBIG™ Compatibility Guidelines -
http://cabig.nci.nih.gov/guidelines documentation

caDSR -
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

CaWorkBench -
http://wiki.c2b2.columbia.edu/workbench/index.php/Main_Page

EVS -
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocab

ulary

Genscan - http://genes.mit.edu/GENSCAN .html

Global GridForum - http://www.gridforum.org/

Hibernate - http://www.hibernate.org/

HGP (US Department of Energy site) - http://doegenomes.org/

MAGE-ML - http://www.mged.org/Workgroups/MAGE/mage-
ml.HTML

MGED Ontology -
http://mged.sourceforge.net/ontologies/MGEDontology.php

NCBI BLAST - http://ncbi.nih.gov/BLAST/

OGSA - http://www.globus.org/ogsa/

OMG - http://www.omg.com/

The OGSA-DAI project - http://www.ogsadai.org.uk/

Unified Modeling Language - hitp://www.uml.org

Introduction to Bioinformatics and Java 23

Selected Reading

Initial sequencing and analysis of the human genome. Lander et al. Nature.
2001 Feb 15;409(6822):860-921.

The sequence of the human genome. Venter, JC et al. Science. 2001 Feb
16;291(5507):1304-51.

The caCORE Software Development Kit: streamlining construction of
interoperable biomedical information services. Phillips J, Chilukuri R,
Fragoso G, Warzel D, Covitz PA. BMC Med Inform Decis Mak. 2006 Jan
6;6:2.

Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H,
Gustafson S, Buetow KH, caCORE: a common infrastructure for cancer
informatics. Bioinformatics. 2003;19:2404-2412.

Common data element (CDE) management and deployment in clinical
trials. Warzel DB, Andonaydis C, McCurry B, Chilukuri R,
Ishmukhamedov S, Covitz P. AMIA Annu Symp Proc. 2003; 1048.

Chapter 1l

Introduction to Basic Local Alignment Search
Tool

The Basic Local Alignment Search Tool or BLAST, as it is commonly
referred to as, is a database search tool, developed and maintained by the
National Center for Biotechnology Information (NCBI). The web-based
tool for BLAST searches is available at:

http://www.ncbi.nlm.nih.gov/BLAST/

The BLAST suite of programs has been designed to find high scoring
local alignments between sequences, without compromising the speed of
such searches. BLAST uses a heuristic algorithm which seeks local as
opposed to global alignments and is therefore able to detect relationships
among sequences which share only isolated regions of similarity (Altschul
et al., 1990). The first version of BLLAST was released in 1990 and allowed
users to perform ungapped searches only. The second version of BLAST,
released is 1997, allowed gapped searches (Altschul et al., 1997).

The Purpose of BLAST

Why is BLAST so useful for biologists? It is not uncommon nowadays,
especially with the large number of genomes being sequenced, that a
researcher comes across a novel DNA or protein sequence for which no
functional data is available. Some basic information on the sequence is
necessary before a molecular biologist can take the new sequence into the

26

laboratory and perform meaningful experiments with it. It would, for
example, make the task of deciphering the biological function of a piece of
DNA much easier if it were known that the new sequence encoded a
metabolic enzyme or, indeed, a protein that is a putative member of a
superfamily such as an immunoglobulin, a kinase, etc. Conversely, if the
sequence was a Repetitive DNA Element, it would need an entirely
different approach for its study.

This is where the power of database searching comes in handy. The
principle aim of database searching, in general and with BLAST, in
particular, is to reveal the existence of similarity between an input
sequence (called ‘query sequence’) that a user wants to find more
information about and other sequences (called ‘target’ sequences) that are
stored in a biological database. This is usually the first step a researcher
takes in determining the biological significance of an unknown sequence.

Given the size of biological sequence databases maintained by NCBI
(the non-redundant set of sequences were estimated at 540 million residues
in 2004), database searches usually reveal sequences that have some
degree of similarity to the query sequence. These sequences from the
database that come up with similarities with the input sequence are
commonly referred to as ‘hits’. Once such hits are found, users can draw
inferences about the putative molecular function of the query sequence. A
thumb rule for drawing inferences is that two sequences that share more
than 50 per cent sequence identity are usually similar in structure and
function. Under such conditions, the major sequence features of the two
sequences can be easily aligned and identified. If there is only a 25 per
cent sequence identity, there may be some structural homology, although
in such situations, the domain correspondence between the two proteins
may not be casily apparent. It is also generally accepted that sequences that
are important for function (and therefore, for the survival of an organism
or species) are generally conserved.

An example where a database search resulted in an important discovery
was the finding reported by Doolittle et al. (1983) of the similarity between
the oncogene, v-sis, of Simian sarcoma virus (an RNA tumor virus) and the
gene encoding human platelet-derived growth factor (PDGF). The v-sis
gene was the first oncogene to be identified with homology to a known
cellular gene. This discovery provided an early insight into the critical role
that growth factor signaling plays in the process of malignant
transformation. Another example of the value of database searching was

Introduction to Basic Local Alignment Search Tool 27

the discovery that the defective gene that caused cystic fibrosis formed a
protein that had similarity to a family of proteins involved in the transport
of hydrophilic molecules across the cytoplasmic membrane (Riordan, et.
al., 1989). Cystic fibrosis is the most common inherited disease in the
Caucasian population and affects the respiratory, digestive and
reproductive systems. It is now known that mutations in the cystic fibrosis
gene lead to loss of chloride transport across the cell membrane, which is
the underlying cause of the disease.

Performing a BLAST Analysis

Before we can build a BLAST application, we need to understand how
BLAST searches are performed using the NCBI BLAST service. BLAST
is actually a suite of programs — the particular choice of program(s)
depends on the type of input sequence (amino acid or nucleotide) and the
type of the database to be searched against (protein or nucleotide). The
most commonly used search programs and their applications are described
in Table 2.1.

28

Table 2.1. BLAST programs

Program Comparison Application

BLASTN DNA vs. DNA. Find DNA sequences that
Compares a nucleotide query match the query
sequence against a nucleotide
sequence database.

BLASTP Protein vs. Protein. Find identical (homologous)
Compares an amino acid query proteins
sequence against a protein sequence
database.

BLASTX DNA vs, Protein. Find which protein the
Compares a nucleotide query query sequence codes for
sequence translated in all reading
frames against a protein sequence
database.

TBLASTN Protein vs. DNA Find genes in unknown
Compares a protein query sequence DNA sequences
against a nucleotide sequence
database dynamically translated in
all reading frames.

TBLASTX DNA vs. DNA Discover gene structure.
Compares the six-frame translations (Find degree of homology
of a nucleotide query sequence between the coding region
against the six-frame translations of of the query sequence and
a nucleotide sequence database. known genes in the

database.)

In summary, the available BLAST options are:

1. For nucleotide sequences: BLASTN, BLASTX and TBLASTX

2. For amino acid sequences: BLASTP and TBLASTN

In the simplest case, we need the following pieces of information to

perform

a BLAST search wusing NCBI's web-based service

(http://www.ncbi.nlm.nih.gov/BLAST/):

1. An input query sequence (this can be a nucleotide or amino acid)

2. The database to search against (this can be a nucleotide or protein
database)

Introduction to Basic Local Alignment Search Tool 29

3. A database search program (any of the five available BLAST
options)

Additional parameters such as the matrix and E-values also need to be
set. Once the user submits the necessary information, the BLAST engine
responds with a message informing the user that the request has been
successfully submitted and placed in a queue. The server also provides an
estimate of the time in which the results will become available for viewing.
The BLAST output itself consists of a header that provides information on
the specified BLAST parameters, the request ID for the search, the length
of the query sequence and the database used. Fig. 2.1 - 2.3 show the results
immediately after initial submission of and the output of a BLAST search
performed with the Auman cystic fibrosis transmembrane conductance
regulator (CFTR) mRNA sequence (gi: 90421312). Fig. 2.1 and Fig. 2.2
show the request ID (RID) that uniquely identifies this particular search
job that was submitted to the BLAST queue. We will learn more about
RID in Chapter 3 when we build the functionality to perform BLAST
searches using the NCBI QBlast service. Fig. 2.2 provides a view of the
header information present in the BLAST search results.

Below the header is a line up of sequences from the seclected database
("hits") that match the query sequence along with the number of matches
found (Fig. 2.3). A mouse-over on the first line reveals information on the
origin of the sequence (for example, whether it is a human or a mouse
sequence, the name of the gene, if known) and the score (Fig. 2.4).
Sequences on the top are more significant (have better matches to
sequences in the database and thus, have higher scores) than those at the
bottom (lower scores).

30

J NCBI Blast - Mozilla Fi
Be Edt Yiew Go Bookmarks Took Help ! ! i el ‘
@ @ (%5 gt . vttt .

ER NCBI

o formatting BLAbT

Translations

Nue Prot |'-r|'|

laotida

Your request has been successfully submitted and put into the Blast Queue. 4|

Query = g|90421312 (6132 letters)

The request ID is [1149615834-25671-6748194819 BLASTO4

) o
The results are estimated to be ready i 10 seconds but may be done sooner
Flease press "FORMATI" when you wish ta check your results, You may change the formatting options for

wyour result via the form below and press "FORMATI" again. You may also request results of & different gearch
by entering any other valid request ID to see other recent jobs

E4

Done

BLASTN 22,14 [May-07-2006]

Reference:

Altschul, Scephen F., Thomas L. Nadden, Alejandro A. Schaffer,
Jinghui Thang, Zheng Zhang, Vehb Miller, and Deavid J. Lipman
(1997}, "Gapped BLAST and PSI-BLAST: & new genecacion of

protein database seatch programs", Nucleie Acids Pes. 2513389-3403.

RID: 1149B515834-25871-8748194619.BLASTY

Patabase! All GenBank+EMBL+DDEJ+PDE sequences (but no EST, 8Ts,
G858, environmental samples or phase O, 1 or I HTOS sequences)
3,946,781 sequences; 17,323,731, 715 cocal letters

If you have any problems or guescions wich the cesults of thiz search
please tefec en the BLAST PAQs

Query= gi|904921512 | cef|NN_000D492.3) Howo saplens cyatic fibrosis transmembrand
oonductance regulator, ATP-binding cassectce {sub-femily . member 7)

(EFTHR], mizk

Length=6liz

Fig. 2.2. Header information in BLAST search results

Introduction to Basic Local Alignment Search Tool 31

Bla fdt Wew o Poobmads Tock Heb
S-H-FDRE 0w L]
- - =
Query= gil90421312) cafINN_000482.3| Homo saplens cyscic Zibrosiz cransmembrane g
condustance regulator, ATP-binding cassetcs (sub-family C, member 7]
ICFTR), mRHA
Length=6132
Distribution of 1506 Blast Hits on the Query Sequence
NM_B00482 Homo sapsens cyshc libroals ransmambrane conduciance . 5=12019 E=0
Color key for alignment scores
40-50
Query
o 1000 2000 3000 4000 5000 G000
~
£ e e AR SR A PR 3
chi. k. e ¥ W32

Fig. 2.3. Alignment of BLAST hits to the input sequence

Seore E Q

Ssquences producing significant aligmments: {Bita) Valus I
190421312 |ref|NH 000492.3| Homo saplens cystic fibrosis tra.,., 1.202e+04 0.0
gi| 180331 | ghh| ME8668. 1| HUNCFTRE Huwean cystic fibrosis mRNA, en.,. 1.154e404 0.0
gi|55629259 | ref| %N 519330.1| PREDICTED: Pan troglodytes simil.,. 9751 0.0
g1 475337871 gb| AYE08405.1| Cysteine-free hCFTR in pGEMHE, comple 8159 0.0
gi| 741364929 | cef NN 001032936.1] M mulatta cyacic fibrosi... 8179 0.0
g113047170|gb| AFD13753.1|AFO137S3 Macaca wulacts cystic fibro.,. 8179 0.0
Q1| 46452254 | gh) AYSB5334.1| Sus scrofa cystic fibrosis transmwe... 5481 0.0

1| 6007842 | gb| AF189720.1|AF1689720 Oryctolagus cuniculus chlor.,. 5241 0.0
gi|55742781|ref [NM 001007143,1| cCanis familiaris cystic fibro... 5027 0.0
g1]54873161|9b) AY780429.1] cCanis familiaris cystic fibrosis c,.. 5027 0.0
g1 11009684 | gb| U40227, 11 0CU40227 Oryctolagus cuniculus CFTR chlor 4801 0.0
g111669376|gb| ACOODDEL. 1 Homo sapiens BAC clone CTB-133K23 from 3433 0.0
91182348170 gbv| DQ3IBG142.1] Homo =apiens isolace cfcrliSE9 A ... 3433 0.0

91]89348179|gb| DQ3B5145.1] Homo sapiens isolacte cftr13838 B c.. 3433 0.0

911089348164 |gb| DQ3B6140.1] Homo saplens isolate cftrilSzl & c.. 3433 0.0

1189349161 |gb|DQIBE139.1| Homo =apiens isolace ocftrlldf6 B c... 3433 0.0
gi|BS348146|gb|pO368134.1| Homo sapiens isolate cftrilid2l A c.. 3433 0.0
gi]89348140| gb| DO3EE132.1 Homo sapiens isolacte cfctrl0976 A c.. 3433 0.0
gLIB6169633 |gb| PO3S6260.1] Homo sapiens isolate cftri0875 B c... 3433 0.0

gi|85724377|gh| PO354391.1] Homo =mapiens isolate cftrO0iB1d B c... 3433 0.0
g1189348176| gh| DO3BA144.1| Homo =apiens isolate cftrid8dg_A c.. 3429 0.0

g1| 859348173 | gh| MQ36A143.1| Homo sapiens isclate cftrlli5ES B c.. 3426 0.0
91189348158 | gh| DRIBE138.1| Homo sapiens isolace cftrlld7e A o.. 3424 0.0
g1|89349155|gb| DOIEE137.1| Homo sapiens isolate cferild?3 B e... 3424 0.0
g1|8934814%|gb|DQIBA135.1| Homo sapiens isolate cfcri1d2l B e... 3424 0.0
A1l ASAAR14T | ahi NOIRATAA. 11 Hama asniena ianiarte oftrinS76 R om.. 1424 n.n xl
R S i s e e S e R B s =iti 1F i
Dare

Fig. 2.4, Definition of database hits

32

Developing the SwingBlast Application

Now that we understand the significance and the working of the BLAST
engine, we can begin our journey into the world of Java development by
building a BLAST application, which we will call SwingBlast, from the
ground up. In this Chapter, we will create the user interface elements using
Java Foundation Classes or JFC, also known as Abstract Windowing
Toolkit (AWT) and Swing classes. In Chapter 3, we will write the actual
code to run the BLAST searches based on the NCBI BLAST engine. In
each case, we will build the application in an iterative fashion thereby
demonstrating a step-wise approach to building software - creating a basic
program structure or framework and adding bits of code in an incremental
fashion to enhance its functionality.

The steps for building Java applications from a software engineering
point-of-view are as follows:

1. Develop use case scenarios

2. Define software modules

3. Define classes

4, Write the Java code (business logic)
5. Run and analyze output

We will begin by creating use cases that define the actions that a user
may wish to perform on the application and the behavior that a user
expects from the application in response to those actions. Use cases,
simply stated, are individual scenarios that allow software developers to
layout the behavior and functionality expected of the software. To create a
Java based BLAST application that allows users to submit sequences and
to retrieve the results of the search operation, we can envision the
following use case scenarios:

1. User provides input information to the application

2. User submits the input information to the NCBI BLAST server

Introduction to Basic Local Alignment Search Tool 33

3. The application displays the selected BLAST results in graphical
format

Fig. 2.5 provides a UML diagram that describes the interactions
between the user and the application. The specific details about the
expected input and output are as follows:

1. User provides input information to the NCBI BLAST engine: The
input data can be a sequence or, if available, the corresponding
sequence id from GenBank® (an annotated repository of all publicly
available DNA sequences maintained by the NIH), which uniquely
identifies a sequence within the GenBank database. The application
behavior in either case is as follows:

a. The input information is a nucleotide or protein sequence: In this
case, after the sequence information is provided, the application
automatically recognizes the sequence type, loads it in the Fasta
format (Fig. 2.6) and presents the appropriate valid BLAST
options (for example, BLASTN for nucleotide and BLASTP for
protein etc., as explained in Table 2.1). The invalid BLAST
options are disabled.

b. The input information is a valid GenBank id (also called the GI
number). In this case, the application downloads the sequence
from GenBank and displays it in the appropriate format as stated
above.

2. User submits the sequence to the NCBI BLAST server. Once the
sequence becomes available to the application (either directly
supplied by the user or downloaded from the GenBank id), the user
selects the necessary BLAST parameters (the type of BLAST
program, the database, the matrix, the E values, etc.) and hits the
“Submit” button. This sends the sequence to the NCBI BLAST server
for the search operation.

34

Provide [nput [nfarmation to the application

Fig. 2.5. UML diagram for the SwingBlast use cases

The last use case (“User wants to browse the BLAST results in a
graphical format”) arises from a need to view the BLAST output, that is,
the list of sequences from the database that matched the input sequence in
a graphical and interactive fashion.

Header on firsl fine beginning with & *=" symbal

Sequence begnning from sacond line

»q1 | 6996995 |ref |NH_000492 . 2| Homo sapiens CFTR aRNA T
AATTOGAAGCARATGACATCACAGCAGETCAGAGAK Hﬁ AGOGTTGAGCOSCAGGLACCCAGAGTAGTAGG
TCTTTGRCAT TAGEAGCTTGAGCCCACACGEROCCT AGCAGEGACCCCAGCOCCCGAGAGACCATGCAGAG
GTCGCCTCTCGAAAACGOCAGCGTTETCTOCAMC T TTT T T TCAGC TGEACCAGACCAAT TTTCAGGANA
GEATACAGACAGLGLCTGGAATTGTCAGACATATACCAAATCCCTTCTGT TGAT TCTGLTGACAATCTAT
CTOAAAMATICGAAAGAGAATOCGATAGAGAGCTOGCTTCAARGARAARTCCTARACTCATTAATGCCCT
TCGGOGATGT TTTITCTGGAGATTTATGT TCTATGGAATCTTTTTATATT TAGGGGAAGTCACCARNGCA
GTACAGLCTCTCTTACTOGGAAGAATCATAGCT TCCTATGACCCOGAT AMCARGGAGGAMCGCTCTATCG
CGATTTATCTAGGCATAGGCT TATGLCTICTCT TTAT TGCTGAGLACACTOCTCCTACACCCAGCCATTTT
TGHCCTTCATCACATTOGAATOCAGATGAGAAT AGCTATGTTTAGTTTGATT TATAAGAAGACTTTAAAG
CTGTCAMGCCOTCTTCTAGATARAAATAACTATTOGACAACTTGT TAGTCTCCTTTCCAACAACCTGAACA
AN TTTCATCAMEGACT TECATIGECAC AT TTOG TETGOATOSCTCCTT TGCAAG TCECACTCE TCATGSE
BCTAATCTGELAGT TET TACAGGLG T TGOCTTCT G TGOACT TGOT TTCCTRATASTCCTTGCCCTTTIT

Fig. 2.6. A sequence represented in Fasta format

Introduction to Basic Local Alignment Search Tool 35

Designing the SwingBlast Java Application

The swingBlast application involves data input from the user (the
sequence or the GI number which identifies the sequence), manipulation of
the input data ("BLASTing" the sequence against the selected databases),
and visualization of the results of the database search (the BLAST output).
Clearly, there are different parts to the application each of which performs
a different function. We will follow the MVC framework we described in
Chapter 1, while designing the various pieces of functionality of the
SwingBlast application.

In line with the incremental approach to building the swingBlast
application, we will as a first step, create the basic framework application
that will perform two basic functions - allow users to input a nucleotide
sequence to the application and to format it in the Fasta format. The
structure of the Java application we will build is shown in Fig. 2.7 below.

Directory to store project fiks
-

/ Java packages

SwingBlast
L src /
e

Lorg £ Java class definition files
| j b {stored a5 java files)

L SwingBlast /

| SwingBlast1.1 | ¥

— SwingBlastl.2

— SwingBlastl.3

L SwingBlastl.n

Fig. 2.7. Layout of the SwingBlast application

As depicted in Fig. 2.7, we define a project directory called SwingBlast
to store the project files. We create a src (source) directory, in which we
will create the packages org, org.jfb and org.jfb.SwingBlast to
provide a default hierarchy for the class files. This layout also helps to
group the necessary functionalities of the application, for example, by
placing all the GUI classes in the SwingBlast package, all the source code
files in the src directory and so on . swingBlastl.l, ..., 1.n, etc., arc the
Java class definition files, where the numbers refer to versions of the

36

software as we build functionality step-by-step. For the SwingBlast
application, the package name we will use in our Java class definition files
will be org.jfb.swingBlast. After the package is declared, we name any
import statements to be included in the program. Import statements load
the classes that encapsulate functions necessary for the application to run.
Since classes are contained in packages for the purpose of grouping
common functionalities together, entire packages may be imported, if
necessary. By using wildcards with import statements for example,

import java.awt.*;

we can ensure that all classes in the AWT package, which provide the
Java graphical user interface elements, are available to the application.

As we mentioned earlier, the swingBlast application takes data input
from the user and responds to the input by taking appropriate actions. To
make the application respond appropriately to user initiated actions, we
need to add what are known as event listeners to the code. This
functionality allows us to add events to menu buttons that respond to
simple actions such as clear user input or quit the application, etc., as well
as complex functionality, some of which we will demonstrate in this
Chapter. To begin with, we will learn the basics of the Java event model
and see how to add events and event listeners in the next few sections.

Java Event Model

The Java Event Model is based on the Observer design pattern also
known as the Publish-Subscribe design pattern and a delegation model
that allows a source to propagate an event to the relevant observer. The
Publish-Subscribe design pattern is based on the Observer pattern where
the Observer object listens for events from the Subject object. The Publish-
Subscribe design pattern is similar to the Observer design pattern except
for additional element called the Event Channel that separates the
Observer (called Subscriber in the Publish-Subscribe design pattern) and
the Subject (called Publisher in the Publish-Subscribe design pattern). The
Event Channel performs the role of a messaging hub to broadcast events
from Publishers to all the associated Subscribers.

Java uses what are known as EventListener objects to listen to changes
to AWT or Swing components. Under this model, observers can be

Introduction to Basic Local Alignment Search Tool 37

registered to listen to an object via Listener methods depending on the type
of the listener or the kinds of events one is interested in. The general
format for such methods is addxxxListener(), for example,
addMouseListener (MouseListener 1), which is a method to listen to
any mouse event generated by the object the listener is registered to. The
listener object provides a callback method that is called by the object that
is generating the event. The callback method will have the appropriate
parameters that define such data as the source (for example, JButton,
JPanel, or a main window, etc.) and type of event (for example, a mouse
click event, or a focus event when selecting a particular Swing component
or an action event, like pressing a submit button).

In Java, all events are executed in the same thread as the window
painting event (via paint ()). This thread is called the event-dispatching
thread. For this reason, code in an event listener should be fast to execute
to avoid interference with the drawing events.

Two types of events are defined in Java: low-level events and semantic
events. Low-level events represent system related events that emerge from
objects such as mouse and keyboard, etc., while semantic events arise from
operations such as clicking on a button, selecting a text in a drop down
box, etc. Depending on the situation, it is advisable to listen to semantic
events whenever possible since they are more specific in nature - for
example, listening for a button event inside the component that contains
the button, rather than a mouse event, which can occur outside of a
component.

Adding Events to Applications

To add events to applications, we will need to add two import
statements at the beginning of our code:

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

These Java packages provide the classes that are needed for triggering
and handling events. Let's take the example of making the SwingBlast
application respond to actions initiated by the user by clicking on the Quit
button under the swingBlast Menu. To create the Quit button, we create

38

an object called quitItem of type JMenuItem with the following piece of
code:

quitItem = new JMenultem("Quit");

To associate quitItem with a mouse click event that leads to closing the
application, we first instantiate an ActionListener. Next we register the
new listener to receive events from this button by calling the button's
addActionListener method:

quitItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);
}
)i

Actions triggered by mouse events such as a button click will also call
the actionPerformed method from that listener and pass it an
ActionEvent object as shown in the code above. That ActionEvent object
contains all the properties of this event. In the early days, in C, you would
have to catch the system interrupts and analyze the interrupt number
received to figure out the type of event (viz., a keyboard or a mouse action
or a USB port sending or receiving information, etc.). In Java, Swing does
that for you by encapsulating all the hardware interactions into its event
framework. This is undoubtedly much easier and means less work for the
Java coder. Inside that actionPerformed method, all we need to do is to
simply read the ActionEvent properties and code the appropriate action to
respond to the event.

The code to handle events associated with the clear button is
constructed in a similar manner. The text box to enter sequences was
earlier created as an object of type JTextArea using the code:

sequenceArea = new JTextAreal();

The event handling code for the clear button is similar, except that the
exact action specified is that the text in the sequenceArea box is set to
nothing (""):

clearButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
sequenceArea.setText("");

}
H;

Introduction to Basic Local Alignment Search Tool 39

Designing the SwingBlast GUI

We can now create the first version (1.1) of the swingBlast application.
SwingBlast version 1.1 will have a text box to enter sequence data, a
Clear button to delete the entered sequence and a menu bar for quitting the
application (Fig. 2.8).

£ SwingBlastVersion 1.1

SwingBlast

ow |

Sequence

Clear

Fig. 2.8. SwingBlast Version 1.1

Let's now write the code that will create swingBlast version 1.1. At the
most basic level, our code will look like Listing 2.1.

Listing 2.1. Coding SwingBlast version 1.1
package org.jfb.SwingBlast;

import javax.swing.*;
import java.awt.*;

public class SwingBlastl_1 extends JFrame {
private static final String APP_NAME = "SwingBlast";
private static final String APP_VERSION = "Version
1.1";
private static final Dimension APP_WINDOW _SIZE = new
Dimension(500, 300);

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;

40

private JButton clearButton;
private JMenultem quitItem;

public SwingBlastl_1() {
super (APP_NAME + APP_VERSION);
setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setLayout (new BorderLayout());
setContentPane (newContentPane);

JMenuBar menu = new JMenuBar();

JMenu swingBlastMenu = new JMenu(APP_NAME);
quitItem = new JMenultem("Quit");
swingBlastMenu.add(quitItem);
menu.add(swingBlastMenu) ;

setJMenuBar (menu) ;

// The sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequencelrea);
seqguencePanel.setLayout (new
BoxLayout (sequencePanel, BoxLayout.LINE AXIS));
sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new
Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder (BorderFactory.createEmptyBorder (10,
0, 10, 0));

//Lay out the buttons from 1left to right
JPanel buttonPane = new JPanel();
clearButton = new JButton("Clear");

buttonPane.setlLayout (new BoxLayout (buttonPane,
BoxLayout.LINE AXIS));

buttonPane.add(Box.createHorizontalGlue());

buttonPane.add(Box.createRigidArea(new
Dimension(10, 0))});

buttonPane.add(clearButton);

JPanel jPanel = new JPanel();

jPanel.setLayout (new BorderLayout());

jPanel.setBorder (BorderFactory.createEmptyBorder (0,
10, 10, 10));

jPanel.add(sequencePanel, BorderLayout.CENTER);

jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredSize(APP_WINDOW_SIZE);

Introduction to Basic Local Alignment Search Tool 41

//Display the window

pack();

Dimension screenSize =
Toolkit.getDefaultToolkit().getScreenSize();

setLocation((screenSize.width -
APP_WINDOW_SIZE.width) / 2,

(screenSize.height -

APP_WINDOW_SIZE.height) / 2);

setVisible(true);

}

public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable() {
public void run() {
final SwingBlastl_1 view = new
SwingBlastl 1();
}
})i

As described earlier, we begin by declaring a package, which in this
case is named after the swingBlast application that we are building. The
common prefix jfb is short for Java for Bioinformatics. Since we are
creating a Swing based GUI to manage sequence input and analysis, we
have named the class "SwingBlast". The suffix 1_1 at the end of the class
name reflects the fact that this is version 1.1 of the swingBlast
application.

A simplified general format of the class declaration is as follows:

class_modifiers class <class_name> extends <superclass_name>

{
/* list of class data fields */

/* list of class methods */
In our case, the modifier for the swingBlast1_1 class is public which
means other methods or classes outside of this class may access this class:

public class SwingBlastl_ 1 extends JFrame {

}

By convention, there can be only one public class in a Java file; further,
the name of the Java file must match the name of the public class. For this

42

reason, the code in Listing 2.1 must be stored in a file called
SwingBlastl 1. java.

Note the use of the extends keyword in the class declaration. The
extends keyword indicates that the swingBlast1_1 class inherits methods
from the class JFrame. In object oriented terminology, SwingBlastl_1 is
called the sub or child class while JFrame which it derives from is called
the parent (or super) class. The extends keyword obviates the need for
instantiating JFrame separately in the swingBlastl_1 class to access its
methods. Inside the swingBlastl_1 class, we can call any of the methods
available in the parent JFrame class.

JFrame is a Swing container that serves as the top-level or main
application window. Top-level Swing containers provide space within
which other Swing components can position and draw themselves. Swing
components are also called “lightweight components” because they are
written in Java versus AWT components or “heavyweight components”
which are native components (written in C or C++, etc.) wrapped into Java
classes. It is important to know what class of components are being used.
As a rule of thumb, Swing and AWT components should not be mixed or
used together in the same application, as this may lead to unpredictable
behavior during repainting, and may make the application hard to debug.

The Swing framework provides a mechanism for interactions with
individual components through event handling. This is what the two
import statements at the top of our code in Listing 2.1 do:

import javax.swing.*;

import java.awt.*;

The first package provides a set of lightweight components while the
second contains all classes for dealing with graphics, events, images, etc.
Fig. 2.9 shows the superclass hierarchy of the JFrame class where each
subclass is shown below its parent class. According to this scheme, the
JFrame class is derived from the Frame class, which in turn is derived
from the Window class and so on. The Frame class defines a top-level
window with a title and a border and has methods such as getTitle,
setTitle etc., which respectively get and set the title of the frame. By
definition, the JFrame class derives these methods from the Frame class
(and other superclasses). Every main window that contains Swing
components should be implemented with a JFrame. Examples of other

Introduction to Basic Local Alignment Search Tool 43

containers are JApplet, JWindow and JDialog. In our application, JFrame
will serve as the top-level container. JFrame in turn will provide the
framework to contain other components like for example JPanel, JButton
and JMenu, etc.

java.lang.Chject
java.awt.Component
\—v java.awt.Container
\—r java.awt.Window

‘—y java.awt.Frame

_, Javax.swing.JFrame

Fig. 2.9. Class hierarchy of the JFrame class

The next three lines of code define constants for setting the name
(swingBlast), version (1.1) and the window size (500 x 300 pixels) of the

application. We will use upper case names separated with underscores ‘_’,
as a naming convention for our constants :

private static final String APP_NAME = "SwingBlast";

private limits the accessibility of the variable called app_NaME to other
objects within the same class. The keyword Static means that the value of
the variable is shared by any object of that same class (this also defines
what is known as the class variable). This means that if one object
modifies it, the other object can see the new value. A non-static variable,
on the other hand, is modifiable only by the object instantiated from within
the same class. The keyword final means that the variable cannot be
changed and therefore it is a constant. The constants ApP_NAME and
APP_VERSION are of type String as indicated in the code. To summarize,
APP_NAME is a constant accessible only from within the class and it has the
same value for any object belonging to this class.

The next 5 lines declare Swing components of the types JComponent,
JTextArea, JScrollPane, JButton and JMenultem respectively. All Swing
components (except top-level containers) whose names begin with "J" are
derived from and inherit from the JComponent class such as JTextArea,
JPanel, JScrollPane, JButton, and Jmenultem. JComponent is thus the
base class for all these Swing components.

44

The next line:

public SwingBlastl 1() {

defines the constructor for the swingBlastl_1 class. Note that it is
declared public, has the same name as the class itself and does not return
anything. The SwingBlastl_1 constructor also does not accept any
parameters and therefore is the default constructor for the swingBlastl_1
class.

The super keyword in the swingBlastl_l constructor calls the
constructor of the superclass (hence the use of the term "super") - which
in this case is JFrame, since swingBlastl 1 "extends" JFrame. Next it
passes the String variables app_NaME and APP_VERSION to the JFrame
constructor to set the name and version of the application. The description
of the JFrame constructor that is used is shown below. This information is
available from the Java 2 API documentation (Fig. 2.10).

%3 IFrame (Java 2 Platform SE 5.0) - Mowilla Firafox
e ERt Yew Qo Dookmets Took e

G- GG = ¥OelQ i
P tamad - o {1540 Plationn SE 5.0) q| g
iy A) ~
Java'™ 2 Platform F
Slindard ed Bl [Constructor Detail
All Clazses
JFErmne
Packages
Ve apnet public JPrame ()
|ava awd - throus MesdissnExcaption

Constructs A new frame that i metally wwisible

‘Ths constructor sets the component’s locale property to the valus returned by JComponenc. gechafaulcloonle

Throws:
HeadlessExcept ion - f GraphiceE Headless() raturns trae.
See Also:
SraphivsEuviromeent . 1alieadless (), Conponenc, setSizejint, inc),

Component . setiisible (boolsan), JComponsnt . getbefauleLovale ()

JFrame
Creates a Frame n the specified SraphicsContigueac ton of a screen dewice and a blank ntle
“This constructor sets the component’s locale propesty to the value remmed by JComponent . gechefauiclocale

Paramerers:
e - the GraphicsContiguear Lon that is used 1o construct the new Frame, £ ge it aull, the system defaul

")@ Pt © Fraprovon ik O] atzhcase

£

Fig. 2.10. Java 2 API documentation on JFrame

Introduction to Basic Local Alignment Search Tool 45

Name: JFrame(String title)
Description: Creates a new, initially invisible Frame with
the specified title.

The same result can also be achieved by explicitly setting the title as
follows:

setTitle(APP_NAME + " " + APP_VERSION);

The line:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

uses the setDefaultCloseOperation method from the JFrame class
which is defined as follows:

public void setDefaultCloseOperation(int operation)

and sets the operation that we want the application to perform by default
when the user attempts to close the frame. We have specified the operation
to exit the application by using the EXIT ON_CLOSE option.

Coding the SwingBlast GUI

The general scheme for creating and adding Swing components to an
application consists of the following steps:

1. Create an instance of a top-level container such as Jframe

2. Use a layout manager to specify the location and size of the
components

3. Specify the top-level container's content pane to hold the individual
GUI elements

To begin with, we create an instance of the JPanel class (called
newContentPane), which defines a generic container as the top-level
container. We will use this container to hold our GUI elements.
Components are positioned inside a top-level container using what are
known as layout managers in Java. The area within a top-level container
where individual components (labels, buttons, etc.) are placed is called the
content pane. To specify the content pane of the newContentPane
component as the content pane for storing the visible clements of the

46

swingBlast application, we use the top-level container's setContentPane
method:

newContentPane = new JPanel();
newContentPane.setLayout (new BorderLayout());
setContentPane (newContentPane);

Here we have used the BorderLayout layout manager to align and
position the components. Next we add the menu bar (called SwingBlast)
and a single menu item ("Quit"):

JMenuBar menu = new JMenuBar();

JMenu swingBlastMenu = new JMenu(APP_NAME);
quitItem = new JMenuItem("Quit");
swingBlastMenu.add(quitItem);
menu.add(swingBlastMenu);

setJMenuBar (menu);

Note that components are added using the add method as shown here for
the swingBlast menu:

menu,add(swingBlastMenu) ;

Next we create the sequence pane and add a component called
sequenceArea Of the type JTextArea that simply defines an area for
entering text:

// The sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel ("Sequence");
sequenceArea = new JTextArea();
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequencelArea);
sequencePanel.setLayout (new
BoxLayout(sequencePanel, BoxLayout.LINE AXIS));
sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new
Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder (BorderFactory.createEmptyBorder (10,
0, 10, 0));

To provide scrolling capabilities inside the text area (especially for large
sequences), we have associated the JScrollPane object with the
sequenceArea. The clear button is added in a similar fashion. Finally, we
add the main() method to the program. The main() method actually

Introduction to Basic Local Alignment Search Tool 47

performs the job of creating an instance of the class and running the
application. The Java Virtual Machine (JVM) calls this main() method
when we pass the class name to it. Every Java application must contain a
main() method whose signature looks like this:

public static void main(String[] args) {
// statements;
}

The JVM would eventually complain about a class if the main() method
was missing. The simplified general format for a method in Java is:

method _modifier return_type method name (arguments) {
body of the method;
}

In our case, the method looks like this:

public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable() {
public void run() {
final SwingBlastl 1 view = new SwingBlastl 1();
}
)i
}
}

The line:

SwingUtilities.invokeLater (new Runnable() { }

indicates that the painting of the GUI takes place in a separate thread
(the AWT thread or the event-dispatching thread) and is a way of
separating the GUI processes from the business processes (such as a
BLAST operation) as strongly advised in the Java guidelines.

A thread is a process that is capable of running concurrently
alongside other threads or processes.

The event-dispatching thread is the thread responsible for handling
events and repainting of components. It is therefore very important
to avoid any running heavy resource consuming code in the event-
dispatching thread.

48

The keyword Runnable defines the type of object that will run in a new
thread. The invokeLater() method causes the event-dispatching thread to
call the run() method of the Runnable object which is passed to
invokeLater() method after all pending events (such as repainting a
component, etc.) are processed. The run() method of the Runnable object
is in charge for creating a SwingBlast object through the constructor
method of SwingBlast, which in turn performs all the specified actions,
such as creating the top level window, setting its name and laying out the
GUI elements, etc.

Compile and run the code shown in Listing 2.1. As you will notice, the
basic framework as described above does not do anything useful apart
from displaying the graphical interface as shown in Fig. 2.8. The only
events the application can respond to so far are the default Minimize,
Maximize and Close operations through icons located on the top right of
the application window.

Coding the SwingBlast Business Logic

We will begin the process of building the business logic into the
application by adding code that will format the user entered sequence into
the commonly used Fasta format. We will simultaneously add code that
will calculate and display the size of the input sequence. We will then
incorporate a simple algorithm to determine the sequence type — that is, if
the user entered sequence is nucleotide or protein.

The Fasta format as defined earlier contains a header that begins with
the greater than symbol (>) and contains information about the sequence
such as sequence identifiers and size, etc. (which may be delimited by
separators such as vertical bars or spaces) on the first line and is followed
on the second line with the actual sequence (Fig. 2.6).

So how do we get the sequence entered in the text area to rearrange
itself in the Fasta format? As with any programming language there are
more than one ways of achieving this. We will use a method based on
Focus events to implement this. Focus events are triggered whenever a
component such as text area gains or loses focus. Focus events associated
with a particular component can be obtained by registering a
FocusListener with the component. When the component gains or loses

Introduction to Basic Local Alignment Search Tool 49

focus, the relevant method in the listener object (focusGained or focusLost,
respectively) is invoked, and the FocusEvent is passed to it. The general
method to do this is shown in Listing 2.2.

Listing 2.2. Adding Focus events and listeners to SwingBlast

sequencelArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// add statements here

}
})s

We will design the code such that after a sequence has been added to the
text area, it will be converted into the Fasta format as soon as the text area
loses focus (for example, when a user navigates away from the text area to
another part of the application). Conversely, no action will be performed
when the sequencearea component gains focus. We therefore want to add
program logic in the focusLost method, which gets activated after a
component loses focus, to achieve this. Listing 2.3 shows how to
implement this.

Listing 2.3. Programming the focusLost method

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Retrieve the sequence in the text area
String seqText = sequenceArea.getText();

// Convert the sequence into Fasta format
String header = null;

int seqlLength = 0;
String sequence =
String fastaSeq =

I
wn o,

seqText = seqText.replaceAll("\\s", "");
sequence = seqText.toLowerCase();

header = "> Sequencel";
segLength = seqText.length();
fastaSeq = header + "|" + seqLength + "\n" +

sequence;

50

sequenceArea.setText (fastaSeq);

}
})i

For the header part of the Fasta sequence, we will add a generic label
(called "sequencel") to represent the name of the raw sequence entered by
the user followed by a vertical bar and the size of the sequence for the
purpose of illustration. Plug this into the main code and test the application
by pasting a sequence (such as the first few hundred bases of the CFTR
gene sequence shown below) into it.

AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAGGGTTGAGCGGCAGGCACCCAG
AGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGC
CCGAGAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCTCCAAACTTTTTTTC
AGCTGGACCAGACCAATTTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATAT
ACCAAATCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGAAAGAGAATGGGA
TAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTC
TGGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCA

You will see that once the text area loses focus, for example, by clicking
on the swingBlast menu, the sequence is converted into lower case and
formatted into the Fasta format (Fig. 2.11 and Fig. 2.12).

< SwingBlast Version 1.1

SwingBlast

AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAGGGTTGAGCGGCA
GGCACCCAGAGTAGTAGG
TCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCTAGY
GCCCOAGAGACCATGCAGAG
GTCGCCTCTGGAAMAGGCCAGCGTTGTCTCCAMCTTTTITICAGCTGGAC
CAGACCAATTTTGAGGAAA
GGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCTGTTG
Sequence ATTCTGCTGACAATCTAT

CTCAAMAATTGCARAGAGAATGGGATAGAGAG CTGGCTTCAAGARAAATCCT
AAACTCATTAATGCCCT
TCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTTI TATATTTAGG
GGAAGTCACCARAGCA

Fig. 2.11. Unformatted nucleotide sequence

Introduction to Basic Local Alignment Search Tool = 51

= SwingBlast Version 1.1

SwingBlast

r Sequencel|420
aattygaagraaatgacatcacageagotcagagaaaaaggyitgageggeaggcacceagagta
1gtaggtcmggcaﬂaggagcﬂgagccc agacggecctageagyuaccecagegeccgagagace
atgcagagotcgectetggaaaagaccagegtiotetccaaacttititcagetggaccagaccaattitys
ggaaaggatacagacagegcectggaatigtcagacatataccaaatecetictgttgatictgctgacaat
ctatctyaasaattggasagagaatgggatagagagetgoctticaaagaaaaatectaaactcattaat
gctcttcggcgatgtmtlctggagatﬂatgttctalggaatcﬂtﬂatamaggggaagtcaccaaagca|

 clar |

Fig. 2.12, Fasta formatting of sequences (Text area loses focus)

In addition, a header line is added as specified in the code along with the
length of the sequence. Although the logic to convert raw sequence into
Fasta format does work as described, we need to incorporate a way to tell
the FocusEvent method not to take any action if the sequence is already in
the Fasta format (either because the sequence was pasted in the Fasta
format or because it was formatted by the user formatted by the user using
the FocusLost method) and therefore does not need formatting. This is
easily done by checking for the presence of the ">" character at the
beginning of the sequence as shown in Listing 2.4 below.

Listing 2.4. Checking for Fasta formatting of sequences

sequenceArea.addFocusListener (new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Retrieve the sequence in the text area
String seqText = sequenceArea.getText();

int idx = segText.indexOf(">");
boolean fastaFormatted = idx != -1;

52

String header = null;
int seqLength = 0;
String sequence =
String fastaSeq = ;
// Check if sequence is in Fasta format
if (fastaFormatted) {
int returnlIdx = seqText.indexOf("\n");
header = seqText.substring(0, returnIdx);
fastaSeq = seqText.substring(returnIdx + 1,

LU LI
1

seqgText.length()).replaceAll("\\s", "").toLowerCase();

fastaSeq = seqText;

} else {
seqText = seqText.replaceAll("\\s", "");
fastaSeq = seqText.tolLowerCase();
header = "> Sequencel"”;
seqLength = seqText.length();

}

// Convert the sequence into Fasta format if not Fasta
//formatted

if (!fastaFormatted) {

fastaSeq = header + "|" + seglength + "\n" +

fastaSeq;

}

sequenceArea.setText (fastaSeq);

}

To make the sequence align properly, we will use a monospace font
such as Courier. The code to do this is as follows:

final Font sf = sequenceArea.getFont();
Font £ = new Font("Monospaced", sf.getStyle(), sf.getSize());
sequenceArea.setFont (f);

Run the code again. This time the sequence is properly aligned (Fig.
2.13).

Introduction to Basic Local Alignment Search Tool 53

< swingBlast Version 1.1
SwingBlast

L= Secquencel | 420

aattggaagcaaatyacatcacagcaggtcagagasasagggttgagcggcaggcacccagagt
agtagytctitgycattaggagycttyagcoccagacyyccctaytayyyaccocaycyococoyada)
gaccatgcagaggtocgoctoctgyaaaagyocagogitgtoctccaaacttttLttocagctyyace
agaccaattttgaggasaggatacagacagcygcctygaattytcagacatataccasatccott
Ctyttgattoctgctyacaatctatotyaaaaattyyaaagagastyyyatagagyasctyyoctos
aaagasasatcctasactcattastgoocttogyogatgtitittotggagatttatgttctat

Sequence | .. ccrrerratatttaggggasgtcaccaaagcs)

‘(:iearl

Fig. 2.13. Using monospace font to format sequences

Determining Sequence Type: Nucleotide or Protein?

Now that we have formatted the sequence and calculated its size, lets
plug in functionality into the SwingBlast application that will determine if
the entered sequence is nucleotide (DNA or RNA) or protein. Note that
RNA, like DNA is a polymer composed of four nucleotides. The
difference between RNA and DNA is the nature of the sugar moiety: RNA
has the ribose sugar, while DNA has the deoxyribose sugar. RNA has the
same purine bases as DNA: adenine (A) and guanine (G) and the same
pyrimidine cytosine (C), but instead of thymine (T), it uses the pyrimidine
uracil (U).

Determination of sequence type is done with an algorithm that takes into
account information on the natural composition of nucleotide and protein
sequences. According to the algorithm, if

1. Total number of nculeotides (that is, sum of A, T, G and C's) divided
by the total length of the sequence is greater that 0.85, it is a DNA
sequence

2. Total number of A, T, G, C and U's divided by the total length of the
sequence is greater that 0.85, it is an RNA sequence

54

If neither of these two conditions is met, the sequence is assumed to be a
protein sequence. Note that we are not using the extended DNA/RNA
alphabet that includes symbols for sequence ambiguity as defined in the
International Union of Pure and Applied Chemistry (JUPAC) and
International Union of Biochemistry (IUB) nucleotide and amino acid
nomenclature. Instead, we are assuming the DNA alphabet to be composed
of the four bases A (adenine), T (thymine), G (guanine), C (cytosine) and
N, the RNA alphabet to be composed of A (adenine), U (uridine), G
(guanine), C (cytosine) and N (where N is any nucleotide base) and the
amino acid alphabet to be composed of A (alanine), C (cysteine), D
(aspartate), E (glutamic acid), F (phenylalanine), G (glycine), H
(histidine), I (isoleucine), K (lysine), L (leucine), M (methionine), N
(asparagine), P (proline), Q (glutamine), R (arginine), S (serine), T
(threonine), V (valine), W (tryptophan) and Y (tyrosine).

Let's see how this algorithm works with an example. Take the partial
mRNA sequence of the human CFTR gene (gi: 90421312) as shown
below:

AAUUGGAAGCAAAUGACAUCACAGCAGGUCAGAGAAAAAGGGUUGAGCGGCAGGCACCCAG
AGUAGUAGGUCUUUGGCAUUAGGAGCUUGAGCCCAGACGGCCCUAGCAGGGACCCCAGCGC
CCGAGAGACCAUGCAGAGGUCGCCUCUGGAAAAGGCCAGCGUUGUCUCCAAACUUUUUUUC
AGCUGGACCAGACCAAUUUUGAGGAAAGGAUACAGACAGCGCCUGGAAUUGUCAGACAUAU
ACCAAAUCCCUUCUGUUGAUUCUGCUGACAAUCUAUCUGAAAAAUUGGAAAGAGAAUGGGA
UAGAGAGCUGGCUUCAAAGAAAAAUCCUAAACUCAUUAAUGCCCUUCGGCGAUGUUUUUUC
UGGAGAUUUAUGUUCUAUGGAAUCUUUUUAUAUUUAGGGGAAGUCACCAAAGCAGUACAGC
CUCUCUUACUGGGAAGAAUCAUAGCUUCCUAUGACCCGGAUAACAAGGAGGAACGCUCUAU
CGCGAUUUAUCUAGGCAUAGGCUUAUGCCUUCUCUUUAUUGUGAGGACACUGCUCCUACAC
CCAGCCAUUUUUGGCCUUCAUCACAUUGGAAUGCAGAUGAGAAUAGCUAUGUUUAGUUUGA
UUUAUAAGAAGACUUUAAAGCUGUCAAGCCGUGUUCUAGAUAAAAUAAGUAUUGGACAACU
UGUUAGUCUCCUUUCCAACAACCUGAACAAAUUUGAUGAAGGACUUGCAUUGGCACAUUUC
GUGUGGAUCGCUCCUUUGCAAGUGGCACUCCUCAUGGGGCUAAUCUGGGAGUUGUUACAGG
CGUCUGCCUUCUGUGGACUUGGUUUCCUGAUAGUCCUUGCCCUUUUU

We will call this sequence with a size of 840 bases “S1”. Lets start by
removing all A, T, G and C's from the sequence. The length of the
sequence without A, T, G and C's is 237, lets call this sequence S2.

Number of A, T, G and C's in the sequence = S1 —~ S2 = 603. Next we
remove all the U's from the sequence that remain after removing the A, T,
G and C's (that is, the sequence S2). The length of the sequence after
removing all the U's is zero (since all we had left were U's). Lets call this
S3. The total number of U's in the sequence is therefore S2 — S3 is 237.

Introduction to Basic Local Alignment Search Tool 55

Now let’s calculate the relative proportions of DNA and RNA alphabets in
the sequence.

(A +T + G + C)/Total = 603/840 = 0.72

According to the algorithm, since this is less than 0.85, it cannot be a
DNA sequence.

(A +T+G + C + U)/Total = (603 + 237)/840 = 1

Since this is > 0.85, this is an RNA sequence. We can now write the
code using the above reasoning. Since we will use regular expression
matching to parse the sequence, we will first import the appropriate
libraries to do so:

import org.apache.regexp.RE;

import org.apache.regexp.RESyntaxException;
We declare the magic 0.85 number as a threshold:
private static final double SEQ THRESHOLD = 0.85;

The getsequenceType() method that implements the algorithm is as
follows:

public static int getSequenceType(String sequence) throws
RESyntaxException ({
RE re = new RE("[actgnACGTN]}+");
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs +=
strings[i].length();
}
int length = sequence.length();
int numbOfACGTNs = length -
numbOfLettersOtherThanATGCNs;

re = new RE("[uU]+");
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanUs += strings[i}].length();
}

56

int numbO£fUs = sequence.length() -
numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ THRESHOLD) {
return TYPE_DNA;

} else if ((numbOfACGTNs + numbOfUs) / (double)

length > SEQ_ THRESHOLD) {

return TYPE RNA;

} else {
return TYPE PROTEIN;

}

}

With this code in place, we get the following results for the partial
sequences of the human CFTR nucleotide (Fig. 2.14 and Fig. 2.15) and
protein (Fig. 2.16 and Fig. 2.17).

< Sequence Form D@@

Sequence Form Help

AATTGGAAGCAAATGACATCACAGCAGGTCAGAGARAAAGGGTTGAGCGGCAGG ~
CACCCAGAGTAGTAGG =
TCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGG
CCGAGAGACCATGCAGAG il
GTCGCCTCTGOAMMAGGCCAGCGTTGTCTCCARACTTTTTTTCAGCTGGACCA ;
GACCAATTTTGAGGAAA
GGATACAGACAGCGCCTGGAATTGTCAGACATATACCARATCCCTTCTGTTGAT |
TCTGCTGACAATCTAT
CTGAMAATTGGAMMGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATC CTAAS
CTCATTRATGCCCT
TCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTTTTATATITAGGGG
AAGTCACCAAAGCA

GTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACCCGGATAACAAG
GAGGAACGCTCTATCG b

Sequence

Fig. 2.14. Determining sequence type - CFTR nucleotide sequence

Introduction to Basic Local Alignment Search Tool 57

= Sequence Form [;J@@

Sequence Form Help

=Sequence]|DNA[420 bp
PATTGGAAGCAMATGACATCACAGCAGGTCAGAGAAMAAGGGTTGAGCGGCAGGCA
CCCAGAGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAG
GGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTGOAMAGGCCAGCG
TTGTCTCCARMACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAGGATACAGAC
AGCGCCTGGAATTGTCAGACATATACCARATCCCTTCTGTTGATTCTGCTGACAAT
se CTATCTGAARAATTGGARAGAGAATGGOATAGAGAGCTGGCTTCAMAGAAAAMATCCT
QUeNCE A CTCATTAATGCCCTTCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATC
TTTTTATATTTAGGGGAAGTCACCARAGCA

Fig. 2.15. Determining sequence type - CFTR nucleotide sequence

= Sequence Form B@@

Sequence Form Help

MQRSPLEKASVVSKLFFSWTRPILRKGYRQRLELSDIVQIPSYDSADNLSEKLER |~
EWDRELASKKNPKLI
NALRRCFFWRFMFYGIFLYLGEVTKAVQPLLLGRIASYDPDNKEERSIAIYLGIGL
LLFIVRTLLLHP
AIFGLHHIGMAOMRIAMF SLIYKKTLKLESRYLDKISIGALYSLLENNLNKFDEGLA
HEWYIAPLGVAL
S o LMGLIWELLOASAF CGLGFLIVLALF QAGLGRMMMIKYRDQRAGKISERLVITSEMI
NIQSYIAYTWEEA
MEKMIENLRATELKLTRKAAYWRYFNSSAFFFSGFFVWFLEVLPYALIKGILRKIFTT,
ISFCIVLRMAY
TRAFPWAVATWYDSLGAINKIGDFLAKQEYKTLEYNLTTTEVWMENVTAFWEEG
GELFEKAKQNNNNRK g
TSNGDDSLFFSNFSLLGTPYLKDINFKIERGQOLLAYAGSTGAGKTSLLMMIMGELE
PSEGKIKHEGRISF

Fig. 2.16. Determining sequence type - CFTR protein sequence

58

= Sequence Form
Sequence Form Help

=Seguencel|Protein|1480 aa =
MAORSPLEKASVWEKLFFSWTRPILRKGYRAORLELSDIVQIPSYDSADNLSEKLER |
EWDRELASKKNPKLINALRRCFFWRFMFYGIFLYLGEVTKAYQPLLLGRIIASYDP |
DNKEERSIAINLGIGLCLLFIVRTLLLHPAIF GLHHIGMQMRIAMF SLIYKKTLKLSSR|
LDKISIGALYSLLSNNLNKFDEGLALAHFWWIAPLOVALLMGLIWELLQASAFCGL
GFLIVLALF QAGLGRMMMKYRDQRAGKISERLVITSEMIENIQSYKAYCWEEAMEK | =
MIENLRATELKLTRKAAYVRYFNSSAFFFSGFFWWFLSYLPYALIKGILRKIFTTISFC
VLRMAYTRQF PWAVATWYDSLGAINKIODFLAKAEYKTLEYNLTTTEVWMENYTA
FWEEGFGELF EKAKQNNNNRKTSNGDDSLFFSNFSLLGTPYLKDINFKIERGQL
LAVAGSTGAGKTSLLMMIMGELEPSEGKIKHSGRISF CSAF SWIMPGTIKENIIF GV
SYDEYRYRSVIKACQLEEDISKFAEKDNIVLGEGGITLEGGORARISLARAVYKDAL
LYLLDSPFGYLDVLTEKEIFESCVCKLMANKTRILVTSKMEHLKKADKILILNEGSS
WFYGTFSELGNLAPDFSSKLMGCDSFDAFSAERRNSILTETLHRFSLEGDAPYS
WTETKKQSFKQTGEF GEKRKNSILMPINSIRKF SIVAKTPLAMNGIEEDSDEFLER ™

Sequence

Fig. 2.17. Determining sequence type: CFTR protein sequence

We will call this swingBlast version 1.2. The complete code is
described in Listing 2.5.

Listing 2.5. Determining sequence type

package org.jfb.SwingBlast;

import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;

import javax.swing.*;

import java.awt.*;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.FocusEvent;
import java.awt.event.FocusListener;

public class SwingBlastl 2 extends JFrame {
private static final String APP_NAME = "Sequence Form";
private static final String APP_VERSION = "Version 1_2";

private static final Dimension APP_WINDOW_SIZE = new
Dimension(450, 350);

1

private static final int TYPE_DNA 0;
private static final int TYPE_RNA = 1;
private static final int TYPE_PROTEIN = 2;

private JComponent newContentPane;

Introduction to Basic Local Alignment Search Tool

59

private
private
private

private
private
private

JTextArea sequenceArea;
JScrollPane scrollPaneArea;
JButton clear;

JMenultem aboutlItem;
JMenuItem quitItem;
static final double SEQ THRESHOLD = 0.85;

public SwingBlastl _2() {
super();
segFormInit();

}

private void seqFormInit() {
setTitle (APP_NAME);
setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
newContentPane = new JPanel();
newContentPane.setOpaque(true);
newContentPane.setLayout (new BorderLayout()});

setContentPane (newContentPane);

// Create the menu bar
JMenuBar menu = new JMenuBar();

JMenu

swingBlastMenu = new JMenu(APP_NAME);

quitItem = new JMenuItem("Quit");
swingBlastMenu.add(quitItem);
menu.add(swingBlastMenu) ;

JMenu

helpMenu = new JMenu("Help");

aboutItem = new JMenultem("About");
helpMenu.add(aboutItem);
menu.add(helpMenu);
setJMenuBar(menu) ;

// Create the sequence pane

JPanel sequencePanel = new JPanel();

JLabel sequence = new JLabel("Sequence");

sequenceArea = new JTextArea();

Font font = sequence.getFont();

sequenceArea.setFont (new Font('Courier"”, Font.PLAIN,
font.getSize()));

sequenceArea.setLineWrap(true);

scrollPaneArea = new JScrollPane(sequenceArea);

sequencePanel.setLayout (new

BoxLayout.LINE AXIS));
sequencePanel. add(sequence);
sequencePanel.add(Box.createRigidArea(new Dimension(10,

0))):

sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder (BorderFactory.createEmptyBorder (10,

BoxLayout (sequencePanel,

60

0,

10, 0));

// Lay out the buttons from left to right
JPanel buttonPane = new JPanel();
clear = new JButton("Clear");

buttonPane.setLayout (new BoxLayout (buttonPane,

BoxLayout.LINE AXIS));

buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea (new Dimension(10,

0)));

10,

buttonPane.add(clear);

JPanel jPanel = new JPanel();
jPanel.setLayout (new BorderLayout());
jPanel.setBorder (BorderFactory.createEmptyBorder (0, 10,

10));

jPanel.add(sequencePanel, BorderLayout.CENTER);
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredSize(APP_WINDOW_SIZE);

// Display the window
pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();

/

setLocation((screenSize.width - APP_WINDOW_SIZE.width)

(screenSize.height - APP_WINDOW_SIZE.height) / 2);
setVisible(true);

addListeners();

}

private void addListeners() {

quitItem.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);
}
)i

aboutItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
JOptionPane.showMessageDialog(SwingBlastl_2.this,

APP_NAME + " " + APP_VERSION,

"About " + APP_NAME,

JOptionPane.INFORMATION MESSAGE);

}
)i

clear.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

Introduction to Basic Local Alignment Search Tool

61

text.length()).replaceAll("\\s",

sequenceArea.setText("");

}
)i

sequenceArea.addFocusListener (new FocusListener() ({
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Check if the sequence is DNA, RNA or protein

String text = sequenceArea.getText();

// Format the sequence in FASTA format and retrieve the
// sequence the user entered

int idx = text.indexQf(">");

boolean fastaFormatted = idx t= -1;

String seqText = null;

String header = null;

int seqLength 0;

String sequence =

if (fastaFormatted) {
int returnIldx = text.indexOf("\n");
header = text.substring(0, returnlIdx);
sequence = text.substring(returnIdx +
"").toLowerCase();
seqText = text;
} else {
text = text.replaceBAll("\\s", "");
sequence = text.toLowerCase();
header = ">Sequencel|";
seqgLength = text.length();

}

// Determine the sequence type
int typeOfSequence = -1;
try {
typeOfSequence = getSequenceType(sequence);
} catch (RESyntaxException el) {
el.printStackTrace();

}

String type = null;
String unitOfLength = null;

switch (typeOfSequence) {
case TYPE_ DNA:
type = "DNA";
unitOfLength = " bp";
break;
case TYPE_RNA:

62

type = "RNA";
unitOfLength = " bp";
break;
case TYPE_PROTEIN:
type = "Protein";
unitOfLength = " aa";
break;
default:
type = "N/A";
unitOfLength = " N/A";
}
if (!fastaFormatted) {
seqText = header + type + "|" + seqLength +
unitOfLength + "\n" + sequence.toUpperCase();

}

// Display the results in sequence text area
seqguenceArea.setText (seqText);
}
)i
}

public static int getSequenceType(String sequence) throws
RESyntaxException {
RE re = new RE("{[actgnACGTN]+");
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOflLettersOtherThanATGCNs +=
strings[i].length();
}

int length = sequence.length();
int numbOfACGTNs = length -
numbOfLettersOtherThanATGCNs ;

re = new RE("{uU]+");
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; 1 < strings.length; i++) {
numbOfLettersOtherThanUs += strings[i].length();
}
int numbOfUs = sequence.length()
numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ THRESHOLD) {
return TYPE_DNA;
} else if ((numbOfACGINs + numbOfUs) / (double)
length > SEQ THRESHOLD) {
return TYPE RNA;
} else {

Introduction to Basic Local Alignment Search Tool 63

return TYPE PROTEIN;

}
}

public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable() {
public void run() {
final SwingBlastl 2 view = new SwingBlastl_2();
}
)i
}
}

Note how we have handled the creation of the GUI elements in
SwingBlast version 1.2 (Listing 2.5):

public SwingBlastl_2() {
super();
segqFormInit();

}

We first created a method called seqFormInit () containing all the code
to layout the components and then called the method in the code shown
above. Earlier, for SwingBlast Version 1.1, we had instead bundled all the
code within the main class (Listing 2.1):

public SwingBlastl 1() {
setTitle (APP_NAME + " " + APP_VERSION);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

Using a separate method to build the GUI makes the code easier to read
by separating the widget part from the implementation aspect.

Displaying Valid BLAST Options

The next step, now that we have accurately determined the type of
sequence the user has entered in the text area, is determine which BLAST
options to display for the particular type of input sequence. The purpose of
this is to enable the application to automatically present only the valid
BLAST algorithms appropriate for the input sequence provided by the

64

user. Currently, if a user selects Nucleotide-nucleotide BLAST (BLASTN)
on the NCBI BLAST server and supplies a protein sequence or a GenBank
Id corresponding to a protein sequence, an error message pointing the
mismatch is displayed; however, the BLAST server does not automatically
present the valid options based on user input. Recall from Table 2.1 that the
valid BLAST options for nucleotide sequences are BLASTN, BLASTX
and TBLASTX and the valid options for amino acid sequences are
BLASTP and TBLASTN.

We will begin by adding the needed GUI elements to the SwingBlast
application. The GUI elements we will need are five checkboxes for the
five BLAST algorithms (BLASTN, BLASTP, BLASTX, TBLASTN and
TBLASTX), a drop-down menu to select the databases to search the input
sequence against and the E-value to specify the stringency of search. The
application at this stage should appear as shown in Fig. 2.18. We will
program these GUI elements to be inactivated upon launch of. the
application since no sequence is available for analysis. We will call this
version 1.3 of the SwingBlast application.

< SwingBlast Version 1.3

SwingBlast Help

Sequence

Program
Database

E-value

=i

Fig. 2.18. Adding BLAST options to SwingBlast

Introduction to Basic Local Alignment Search Tool 65

The code to add the BLAST programs as check boxes is as follows. We
first create the required array variables: BLAST_PROGRAMS_DNA,
BLAST_PROGRAMS_PROTEIN, DATABASES and EVALUES to hold the
appropriate allowed values for each of the parameters. Note that we are
illustrating this application with a few BLAST parameters. The user can
add more parameters as per individual requirements.

private static final String[] BLAST_PROGRAMS DNA = new
String[]{"BlastN", "BlastX", "TBlastX"};

private static final String[] BLAST PROGRAMS_ PROTEIN =
new String[]{"BlastP", "TBlastN"};

private static final String[] DATABASES = new
String[]{"nr", "est_human"};

private static final String{] EVALUES = new
String[]{"0.001", "0.01", "0.1", "1", 10", "100"};

We then create the necessary widgets: check boxes for the DNA and
protein BLAST options and combo boxes for the database and E-values.

private JCheckBox[] cbbna;
private JCheckBox{] cbProtein;
private JComboBox comboDbs;
private JComboBox comboEvalues;

We create a method called createProgramPanel() that draws the
BLAST program panel, the database panel and the E-value panel (Listing
2.6).

Listing 2.6. Laying out the BLAST widgets

private JPanel createProgramPanel() ({
// Create the program panel
JPanel programPanel = new JPanel();
JLabel program = new JLabel("Program");
program.setPreferredSize (LABEL_PREFERRED_SIZE);
cbDna = new JCheckBox[BLAST_ PROGRAMS_DNA.length];
String blastProgram;
for (int i = 0; i < BLAST_PROGRAMS_DNA.length; i++) {
blastProgram = BLAST_PROGRAMS DNA{[1];
cbDnafi] = new JCheckBox(blastProgram);
cbDna[i].setMaximumSize (COMBO_PREFERRED_ SIZE);
}
cbProtein = new
JCheckBox[BLAST_ PROGRAMS PROTEIN.length];
for (int i = 0; i < BLAST PROGRAMS_ PROTEIN.length; i++)
{
blastProgram = BLAST_ PROGRAMS PROTEIN[i];

66

cbProtein[i] = new JCheckBox(blastProgram);
cbProtein[i].setMaximumSize(COMBO PREFERRED SIZE);
}

programPanel.setLayout (new BoxLayout(programPanel,
BoxLayout.LINE_AXIS));
programPanel.add(program) ;
programPanel.add(Box.createRigidArea(new Dimension(10,
0)));
for (int i = 0; i < cbDna.length; i++) {
programPanel.add(cbDnafi]);
programPanel.add(Box.createRigidArea(new Dimension(5,
0)));
}
for (int i1 = 0; i < cbProtein.length; i++) {
programPanel.add(cbProtein[i}]);
if (i + 1 < cbProtein.length)
programPanel.add(Box.createRigidArea (new
Dimension(5, 0)));
}
programPanel.add(Box.createHorizontalGlue());
JPanel paramPanel = new JPanel();
paramPanel.setLayout (new BoxLayout (paramPanel,
BoxLayout.PAGE_AXIS));

paramPanel.add(programPanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,
3)))i

// Create the database panel

JPanel databasePanel = new JPanel();

JLabel database = new JLabel("Database");
database.setPreferredSize(LABEL_PREFERRED_SIZE) ;
comboDbs = new JComboBox(DATABASES);

comboDbs .setMaximumSize(COMBO_ PREFERRED_SIZE);

databasePanel.setLayout(new BoxLayout(databasePanel,
BoxLayout.LINE_AXIS));

databasePanel.add(database);

databasePanel.add(Box.createRigidArea(new Dimension(10,

0)));
databasePanel.add(comboDbs);
databasePanel.add(Box.createHorizontalGlue());
paramPanel.add(databasePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,
5))):

// Create the E-Value panel

JPanel evaluePanel = new JPanel();

JLabel eValue = new JLabel("E-value");
eValue.setPreferredSize(LABEL_PREFERRED_SIZE);
comboEvalues = new JComboBox(EVALUES);
comboEvalues.setMaximumSize (COMBO_PREFERRED_SIZE);

Introduction to Basic Local Alignment Search Tool 67

evaluePanel.setLayout (new BoxLayout(evaluePanel,
BoxLayout.LINE AXIS));

evaluePanel.add(eValue);

evaluePanel.add(Box.createRigidArea(new Dimension(10,

0)));
evaluePanel.add(comboEvalues);
evaluePanel.add(Box.createHorizontalGlue());
paramPanel.add(evaluePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,
5)));

enableFunctions (TYPE_UNKNOWN) ;
return paramPanel;

The enableFunctions() method takes an int parameter
(typeOfsequence) and is responsible for setting the check boxes for the
BLAST programs to enable or disable them based on the type of sequence
entered by the user. We will use the setEnabled() function to enable (or
disable) a button. The setEnabled() method takes a parameter of type
Boolean which can be set to true to enable the button and false to disable
the button.

In case of a nucleotide sequence, we want the three check boxes for
BLASTN, BLASTX and TBLASTX to be available. Simultaneously, we
want the database and the E-value combo boxes to become enabled as
soon as the user enters a sequence. This logic is implemented in the
following manner:

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TYPE DNA || typeOfSequence ==
TYPE RNA) {
setChb(chbDna, true);
setChb(chbProtein, false);
setCob (cobDbs, true);
setCob(cobEvalues, true);
} else if (typeOfSequence == TYPE PROTEIN) {
setChb(chbProtein, true);
setChb(chbDna, false);
setCob(cobDbs, true);
setCob (cobEvalues, true);
} else {
setChb(chbProtein, false);
setChb(chbDna, false);
setCob(cobDbs, false);
setCob(cobEvalues, false);

68

In the code shown above, we define the setchb() and setCob()
methods to change the settings of the check boxes (chbProtein for protein
searches, chbDNA for nucleotide searches) and the combo boxes (cobDbs
for database type and cobEvalues for E-values) respectively. These
methods take the object type as the first parameter (check or combo box
whose state needs to be set) and a Boolean parameter (true/false) as
illustrated below:

private static void setChb(JCheckBox|[] boxes, boolean
value) {
for (int i = 0; i < boxes.length; i++) {
boxes[i].setEnabled(value);
boxes{i].setSelected(false);

}
}

In the above method, we iterate over the check boxes, set them to
enabled or disabled and ensure that they are not selected by default. For
example, when the following method is called:

setChb(cbbna, true);

the method changes only the DNA check boxes to true (enables them)
since we have set cbDNA to hold the array of check boxes for only the two
nucleotide related BLAST programs in the code:

private static final String[] BLAST PROGRAMS DNA = new
String[]{"BlastN", "BlastX", "TBlastX"};

cbDna = new JCheckBox[BLAST PROGRAMS DNA.length];

Similarly, the setcob () function sets the values for the combo boxes for
the database and the E-values:

private static void setCob(JComboBox component, boolean
value) {
component.setEnabled(value);
component.setSelectedIndex(0);

}

Conversely, for a protein sequence, we want the BLASTP and
TBLASTN check boxes and the database and the E-value combo boxes to
become enabled and the check boxes for BLASTN, BLASTX and
TBLASTX disabled. The method with this logic included is as follows:

Introduction to Basic Local Alignment Search Tool

69

private void enableFunctions(int typeOfSequence) {

(typeOfSequence == TYPE DNA || typeOfSequence

TYPE_RNA) {

setChb(cbDna, true);
setChb(cbProtein, false);
setCob(comboDbs, true);
setCob(comboEvalues, true);
else if (typeOfSequence == TYPE PROTEIN) {
setChb(cbProtein, true);
setChb(cbbna, false);

setCob (comboDbs, true);
setCob(comboEvalues, true);
else {

setChb(cbProtein, false);
setChb(cbbna, false);
setCob(combobbs, false);
setCob(comboEvalues, false);

We will also add a Belp menu item. The code to add that is fairly

simple:

JMenu helpMenu = new JMenu("Help");
aboutItem = new JMenultem("About");
helpMenu.add(aboutItem);
menu.add(helpMenu);

The Help = aAbout simply describes the current swingBlast version
(Fig. 2.19). The complete code for the application is described in Listing

2.7.

70

About SwingBlast

Sequence)

Al SwingBlast Version 1.3
Program [V BlastN [BiastX [TBlastX []BlastP [TBlastN
Database | v

E-value _ 0.001 ¥
Clear |

Fig. 2.19. Help About Menu information

Listing 2.7. SwingBlast version 1.3
package org.ijfb.SwingBlast;

import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;

import javax.swing.*;

import java.awt.*;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.FocusEvent;
import java.awt.event.FocusListener;

public class SwingBlastl 3 extends JFrame {
private static final String APP_NAME = "SwingBlast";
private static final String APP_VERSION = "Version 1.3";

private static final Dimension LABEL_ PREFERRED_SIZE = new
Dimension(57, 16);

Introduction to Basic Local Alignment Search Tool 71

private static final Dimension COMBO_PREFERRED_SIZE = new
Dimension(60, 25);

private static final Dimension CP_PREF_SIZE = new
Dimension (450, 350);

private static final int TYPE_DNA = 0;
private static final int TYPE_RNA = 1;
private static final int TYPE_PROTEIN = 2;

private static final String{] BLAST PROGRAMS DNA = new
String[]{"BlastN", "BlastX", "TBlastX"};

private static final String[] BLAST_PROGRAMS PROTEIN =
new String[]{"BlastP”, "TBlastN"};

private static final String[]) DATABASES = new
String{]{"nr", "est_human"};

private static final String[] EVALUES = new
String{}]{"0.001", "0.01", "0.1", "1", "10", "100"};

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;

private JCheckBox[] chbDna;
private JCheckBox[] chbProtein;
private JComboBox cobDbs;
private JComboBox cobEvalues;

private JButton clear;

private JMenultem aboutItem;

private JMenultem quitItem;

private static final double SEQ THRESHOLD = 0.85;
private static final int TYPE UNKNOWN = -1;

public SwingBlastl 3() {
super();
seqFormInit();

}

private void segFormInit() {
setTitle (APP_NAME + " " + APP_VERSION);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setOpaque(true);
newContentPane,setLayout (new BorderLayout());

setContentPane (newContentPane) ;

// Create the menu bar

JMenuBar menu = new JMenuBar();

JMenu swingBlastMenu = new JMenu(APP_NAME);
quitItem = new JMenultem("Quit");
swingBlastMenu.add(quitItem);

72

menu.add(swingBlastMenu);

JMenu helpMenu = new JMenu("Help");
aboutItem = new JMenultem("About");
helpMenu.add{aboutItem);

menu.add (helpMenu) ;

setJMenuBar (menu);

// Create the sequence pane

JPanel sequencePanel = new JPanel();

JLabel sequence = new JLabel("Sequence");

sequenceArea = new JTextArea();

sequenceArea.setLineWrap (true);

scrollPaneArea = new JScrollPane(sequencelArea);

scrollPaneArea.setPreferredSize(new Dimension (300,
200));

sequencePanel.setlLayout(new BoxLayout (sequencePanel,
BoxLayout .LINE_ AXIS));

sequencePanel.add(sequence);

sequencePanel.add(Box.createRigidArea(new Dimension(10,

0)));

sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder (BorderFactory.createEmptyBorder (10,
0, 10, 0));

// Lay out the buttons from left to right
JPanel buttonPane = new JPanel();
clear = new JButton("Clear");

buttonPane.setLayout (new BoxLayout (buttonPane,
BoxLayout.LINE_ AXIS));

buttonPane.add(Box.createHorizontalGlue());

buttonPane.add(Box.createRigidArea(new Dimension(10,

0)));
buttonPane.add(clear);

JPanel jPanel = new JPanel();

jPanel.setLayout (new BorderLayout());

jPanel.setBorder (BorderFactory.createEmptyBorder(0, 10,
10, 10));

jPanel.add(sequencePanel, BorderLayout.NORTH);

jPanel.add(createProgramPanel(), BorderLayout.CENTER);

jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredSize(CP_PREF_SIZE);

// Display the window

pack();

Dimension screenSize =
Toolkit.getDefaultToolkit().getScreenSize();

Introduction to Basic Local Alignment Search Tool 73

setLocation((screenSize.width - CP_PREF SIZE.width) /

(screenSize.height - CP_PREF_SIZE.height) / 2);
setVisible(true);
addListeners();

}

private JPanel createProgramPanel() {
// Create the program panel
JPanel programPanel = new JPanel();
JLabel program = new JLabel("Program");
program.setPreferredSize (LABEL_PREFERRED_SIZE);
chbDna = new JCheckBox[BLAST_ PROGRAMS DNA.length];
String blastProgram;
for (int i = 0; i < BLAST PROGRAMS DNA.length; i++) {
blastProgram = BLAST PROGRAMS DNA[i];
chbDna[i] = new JCheckBox(blastProgram);
chbDna[i].setMaximumSize (COMBO_PREFERRED_ SIZE);
}
chbProtein = new
JCheckBox[BLAST PROGRAMS PROTEIN.length];
for (int i = 0; i < BLAST PROGRAMS PROTEIN.length; i++)
{
blastProgram = BLAST_ PROGRAMS PROTEIN[i];
chbProtein[i] = new JCheckBox(blastProgram);
chbProtein[i}.setMaximumSize (COMBO_PREFERRED_ SIZE);

}

programPanel.setLayout (new BoxLayout (programPanel,
BoxLayout.LINE_AXIS));

programPanel.add(program) ;

programPanel.add(Box.createRigidArea(new Dimension(10,

0)));:
for (int i = 0; i < chbDna.length; i++) {
programPanel.add(chbDna[i]);
programPanel.add(Box.createRigidArea(new Dimension(5,
0)))i:

}
for (int i = 0; i < chbProtein.length; it++) {
programPanel.add(chbProtein[i]);
if (i + 1 < chbProtein.length)
programPanel.add(Box.createRigidArea(new
Dimension(5, 0)));
}
programPanel.add(Box.createHorizontalGlue());
JPanel paramPanel = new JPanel();
paramPanel.setLayout (new BoxLayout (paramPanel,
BoxLayout.PAGE_AXIS));

paramPanel.add(programPanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

5)));

74

// Create the database panel

JPanel databasePanel = new JPanel();

JLabel database = new JLabel('"Database");
database.setPreferredSize(LABEL_PREFERRED_SIZE);
cobDbs = new JComboBox (DATABASES);
cobDbs.setMaximumSize (COMBO PREFERRED_SIZE);

databasePanel.setLayout (new BoxLayout(databasePanel,
BoxLayout.LINE AXIS));

databasePanel.add(database);

databasePanel.add(Box.createRigidArea(new Dimension(10,
0))):

databasePanel.add(cobDbs);

databasePanel.add(Box.createHorizontalGlue());

paramPanel.add(databasePanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,

5)));

// Create the E-Value panel

JPanel evaluePanel = new JPanel();

JLabel eValue = new JLabel("E-value");
eValue.setPreferredSize(LABEL_PREFERRED SIZE);
cobEvalues = new JComboBox (EVALUES);
cobEvalues.setMaximumSize (COMBO_PREFERRED_SIZE) ;

evaluePanel.setLayout(new BoxLayout(evaluePanel,
BoxLayout.LINE_AXIS));

evaluePanel.add(eValue);

evaluePanel.add(Box.createRigidArea(new Dimension(10,

0))):
evaluePanel.add(cobEvalues);
evaluePanel.add(Box.createHorizontalGlue());
paramPanel.add(evaluePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,
3)))i

// Set it up disabled
enableFunctions (TYPE_UNKNOWN) ;
return paramPanel;

}

private void addListeners() {
quitItem.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit (0);
}
}i

aboutItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
JOptionPane.showMessageDialog(SwingBlastl_3.this,
APP_NAME + " " + APP VERSION,
"About " + APP_NAME,

Introduction to Basic Local Alignment Search Tool 75

JOptionPane.INFORMATION MESSAGE);

}
)

clear.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
sequenceArea.setText("");
enableFunctions(-1);
}
Y

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Check if sequence is DNA, RNA or protein
String text = sequenceArea.getText();

// Format sequence in FASTA format and retrieve the
// entered sequence

int idx = text.indexOf(">");

boolean fastaFormatted = idx != -1;

String seqText = null;

String header = null;

int seqgLength = 0;

String sequence = "";

if (fastaFormatted) {
int returnlIdx = text.indexOf("\n");

if (returnidx != -1) {
header = text.substring(0, returnlIdx);
sequence = text.substring(returnIdx + 1,
text.length()).replaceAll("\\s", "").toLowerCase();
seqText = text;

}
} else {

text = text.replaceAll("\\s", "");

RE re = null;

try {
re = new RE("[0-9]+");

} catch (RESyntaxException el) ({
el.printStackTrace();

}
boolean isGenBankID = re.match(text);

if (isGenBankID) {
GenbankSequenceDB genbankSequenceDB = new
GenbankSequenceDB() ;
header = "GI:" + text;
Sequence segObject = null;

76

try {
seqObject =
genbankSequenceDB.getSequence(text);
SeqIOTools.writeGenbank(System.out,
seqObject);
} catch (Exception el) {
el.printStackTrace();

}
sequence = seqObject.seqgString();
} else {
sequence = text.toLowerCase();
header = ">Sequencel|";
seqlLength = text.length();
}
}
// Check if sequence has been entered
if (sequence.length() == 0)
return;

// Determine sequence type
int typeOfSequence = TYPE UNKNOWN;
try {
typeOfSequence = getSequenceType(sequence);
} catch (RESyntaxException el) {
el.printStackTrace();
}

String type = null;
String unitOfLength = null;

switch (typeOfSequence) {
case TYPE DNA:

type = "DNA";
unitOfLength = " bp";
break;

case TYPE RNA:
type = "RNA";
unitOfLength = " bp";
break;

case TYPE PROTEIN:
type = "Protein";
unitOfLength = " aa";
break;

default:
type = "N/A";
unitOfLength = " N/A";

}

if (!fastaFormatted) {
seqText = header + type + "|" + seqlength +
unitOfLength + "\n" + sequence.toUpperCase();

Introduction to Basic Local Alignment Search Tool 77

}

// Display results
sequenceArea.setText (seqText);

enableFunctions(typeOfSequence);

}
)
}

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TYPE_DNA || typeOfSequence ==
TYPE_RNA) {
setChb(chbDna, true);
setChb(chbProtein, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);
} else if (typeOfSequence == TYPE PROTEIN) {
setChb(chbProtein, true);
setChb(chbDna, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);
} else {
setChb(chbProtein, false);
setChb(chbDna, false);
setCob(cobDbs, false);
setCob(cobEvalues, false);
}
}

private static void setChb(JCheckBox|[] boxes, boolean
value) {
for (int i = 0; i < boxes.length; i++) {
boxes[i].setEnabled(value);
}
}

private static void setCob(JComponent component, boolean
value) {
component.setEnabled(value);

}

public static int getSequenceType(String sequence) throws
RESyntaxException {
RE re = new RE("[actgnACGTN]+");
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs += strings[i].length();

}

int length = sequence.length();

int numbOfACGTNs = length -

78

numbOfLettersOtherThanATGCNs ;

re = new RE("[uUl+");
strings = re.split(sequence});
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanUs += strings[i].length();
}
int numbOfUs = sequence.length() -
numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ_ THRESHOLD) {
return TYPE DNA;

} else if ((numbOfACGTNs + numbOfUs) / (double) length

> SEQ THRESHOLD) {

return TYPE RNA;

} else {
return TYPE PROTEIN;

}

}

public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable() {
public void run() {
final SwingBlastl_3 view = new SwingBlastl 3();

}
)
}
}

Fig. 2.20 and Fig. 2.21 show the behavior of the application for a
nucleotide and a protein sequence respectively that is entered in the text
area. In both cases, the correct set of BLAST programs arc selected
(BLASTN, BLASTX and TBLASTX for nucleotide sequence and
BLASTP and TBLASTN for protein sequence). Simultaneously, the drop-
down menu boxes for the databases and the E-value are activated for
selection by the user.

Introduction to Basic Local Alignment Search Tool 79

SwingBlast Version 1.3

. AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAGGGTT
|GAGCGGCAGGCACCCAGAGTAGTAGGTCTTTGGCATTAGGAG
[CTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGCCCOAG

. IAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCT
ICCAMMCTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAGGA S |
[TACAGACAGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCE
[TGTTGATTCTGCTGACAATCTATCTGAAAAATTGGARAGAGAATG
(GGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGT |

 |CCTTCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCT| |
| ATATTTAGGGGAAGTCACCAAAGCAGTACAGCCTCTCTTA {1

Fig. 2.20. Displaying BLAST options for a nucleotide sequence

80

£ SwingBlast Version 1.3

SwingBlast Help

=Sequencel|Protein|840 aa [
MQRSPLEKASWSKLFFSWTRPILRKGYRQRLELSDIYQIPSVDS
ADNLSEKLEREWDRELASKKNPKLINALRRCFFWRFMFYGIFLY]
LGEVTKAVQPLLLGRIIASYDPDNKEERSIAIYLGIGLCLLFIVRTLL
LHPAIF GLHHIGMQMRIAMF SLIYKKTLKLSSRYLDKISIGALYSLL
SNNLNKFDEGLALAHFVWWIAPLQVALLMGLIWELL QASAFCGLGR
Sequence |) 4| FOAGLGRMMMKYRDQRAGKISERLVITSEMIENIQSVKAY|
CWEEAMEKMIENLRQTELKLTRKAAYVRYFNSSAFFFSGFFVWFL |
SVLPYALIKGIILRKIFTTISFCIVLRMAVTRQF PWAVQTWYDSLGAI
NKIQDFLQKQEYKTLEYNLTTTEVVMENVTAFWEEGF GELFEKAK
QNNNNRKTSNGDDSLFFSNFSLLGTPVLKDINFKIERGQLLAVA
GSTGAGKTSLLMMIMGELEPSEGKIKHSGRISFCSQFSWIMPGTI/S |

Program lastN BlastX Hlasty [BlastP] TBlastN

Database |nr i

E-value IE
Clear |

Fig. 2.21. Displaying BLAST options for a protein sequence

Summary

In this Chapter, we created a Swing based application that allows users
to prepare sequences for BLAST searches by performing simple
formatting tasks such as conversion into the Fasta format and determining
the sequence type and length. Along the way we introduced how to write
code to respond to events taking place in response to user initiated actions.
We created the GUI elements and wrote the code that enables the elements
to respond to the sequence type and present only the valid BLAST options
that are available for the entered sequence type. The rationale for building
these features into the application was to make it more functional and to
simplify its use for the end-users, given the many potentially confusing
parameters a user has to supply when performing a search operation. In the
next Chapter, we will extend the swingBlast application to actually
perform the BLAST search operation.

Introduction to Basic Local Alignment Search Tool 81

Questions and Exercises

1.

Enhance the SwingBlast application interface to accept multiple
sequences, for example, by incorporating the ability to upload a
multiple Fasta file. Next incorporate code to add checkboxes against
each uploaded sequence to allow users to select specific sequences for
further analysis. Develop the use cases that fulfill the above user
requirements.

Explore the BLAST algorithms in further detail by visiting the tutorial
site listed below. How do you determine the statistical significance of
BLAST hits? What are bit scores and p-values?

Download the sequence for simian sarcoma virus v-sis oncogene gene
from GenBank and perform a BLAST against the nr database. What
BLAST program(s) would you use to find similarities between v-sis
and existing nucleotide and protein sequences? What are the top ten
hits that BLAST returns? Which human and other vertebrate homologs
can you identify?

Additional Resources

BLAST tutorial -
http://www .ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html

GenBank - http://www.ncbi.nlm.nih.gov/Genbank/index.html

Java™ 2 Platform Standard Edition 5.0 API Specification -
http://java.sun.com/j2se/1.5.0/docs/api/

Selected Reading

Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes)
encoding a platelet-derived growth factor. Doolittle RF, Hunkapiller MW,
Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN.
Science. 1983 Jul 15;221(4607):275-277.

Identification of the cystic fibrosis gene: cloning and characterization of
complementary DNA. Riordan JR, Rommens JM, Kerem B, Alon N,

82

Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al.
Science. 1989 Sep 8;245(4922):1066-73.

Basic local alignment search tool. Altschul SF, Gish W, Miller W, Myers
EW, Lipman DJ. J Mol Biol. 1990 Oct 5;215(3):403-10.

Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang
Z, Miller W, Lipman DJ. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402.

Chapter Il

Running BLAST using SwingBlast

Introduction

In the last Chapter, we created the basic framework application called
swingBlast Version 1.3 using Swing libraries to manipulate user defined
nucleotide and protein sequences and prepare them for BLAST searches.
In this Chapter, we will add functionality to the application that enables
users to download sequences automatically from NCBI GenBank, submit
sequences for multiple simultaneous BLAST analyses, and save and view
BLAST results. To begin with, we will demonstrate how to use NCBI's
QBlast package to perform BLAST searches. We will then create an
application called JQBlast to demonstrate how to use theQBlast package to
run BLAST searches.

The NCBI QBLAST Package

NCBI provides a standardized API called URLAPI to formulate and
dispatch direct HTTP-encoded requests to the NCBI QBlast system. The
URLAPI provides a URL and a mechanism to set parameters that allows
users to send sequences for BLAST searches.

NCBI QBlast works through 4 steps:

1. The user provides BLAST parameters through a URL using
the HTTP POST method

84

2. The QBlast service returns a Request Identifier (RID) and a
Request Time of Execution (RTOE, measured in seconds) for
the search, which provide respectively, a unique identifier for
the search operation and an estimate of the time required to
complete the search

3. The user queries the QBlast service with the RID through
HTTP GET method

4. The server sends back the result with a status value that
indicates the progress of the BLAST request

Users of the QBlast service should adhere to the guidelines provided by
NCBI when submitting large batch searches. In general, searches should
be performed in a sequential manner after receiving the RID and RTOE for
each submission. NCBI specifies that each request be submitted after a
pause of no less than 3 seconds to check on the status of the request using
the RID. Failure to do so may overload the server and force NCBI to block
offending users from further use of the service.

Strategy for Creating a QBlast Based System

The design of the NCBI QBlast service as described above stipulates the
need for a client application that performs the following operations:

1. Send search requests made by the user and check the status of
requests periodically

2. Perform the appropriate action based on the nature of the status value
that gets returned

QBlast may return one of three types of status values: "READY"
meaing that the search was completed successfully, "WAITING" meaning
that the search has not been completed and "UNKNOWN" meaning that an
error has been encountered during the BLAST submission and/or search
process. In UML terms, the user and the client application are actors that
interact with the QBlast system. The UML diagram below (Fig. 3.1)
depicts the use cases that encapsulate the basic functionality that is desired
of the system that we wish to create:

Running BLAST using SwingBlast 85

1. User submits query sequence to the QBlast service
2. Application queries status of the BLAST search with a unique RID

3. Applcation returns results approriate to the status value

T

Submit query with parameters to Qblast Ser@

..

Query status with RID to QBlast service \

\\‘_‘b‘—‘——_

Client Application
Fig. 3.1. Use Cases for the QBlast service

In terms of the architecture of the application, we will provide a class
that will wrap the NCBI URLAPI into Java API that can be reused in other
applications. To fulfill these use cases, we will design the QBlast service
to implement 2 methods: submitQuery and querystatus (Fig. 3.2).

QBlast

+submitQueryParameters:Datatype):RIDRTOE
+queryStatus(RID: Datatype). Object

Fig. 3.2. Class QBlast

The oBlast class is our interface to the real NCBI URLAPI. From the
application point of view, it is totally transparent and is designed to be so
in order to accommodate and simplify future changes to the API (or, if
there is a need to adopt an entirely different API). This design ensures that
the framework we create remains usable even if the underlying API
requires changes. The submitQuery() method takes the BLAST

86

parameters (specified through the gBlastParameter object) and returns an
object of type RequestIdentifier. The parameters needed to run the
BLAST search would be obtained from the user through the SwingBlast
GUI we created in Chapter 1. The RequestIdentifier is returned by the
QBlast service in response to the submitted request and contains the RID
and the RTOE for a specific search.

For the queryStatus method similarly, we will need 2 objects:
RequestIdentifier and QBlastResult. A UML diagram with these
considerations in mind is shown in Fig. 3.3.

QBlast

+submitQuery(parameter: BlastF ormParam eter) R equestidentifier
+ojueryStatus(rid: R equestidentifier): QBLastR esuit

Requestidentifier QBLastResult BlastF ormP arameter
-rick String -statusString
-rtoeint -result String

Fig. 3.3. UML class diagram showing the QBlast architecture

Designing the BLAST API

We will design our BLAST API to consist of 3 classes:

* Blast
. BlastManager

. BlastException

Running BLAST using SwingBlast 87

We will define Blast as an abstract class, which means that it
represents an abstract concept, and therefore cannot be instantiated, but
can only be subclassed. An abstract class is declared using the keyword
abstract before the class keyword in the class declaration. In this case, for
example, we would declare the Blast class as shown below:

abstract class blast { .. }

We’ll describe this class in detail later in the Chapter. The
BlastManager class provides a mechanism to get an instance of the
abstract class Blast without having to worry about how to create the
instance by calling the static method (that we had earlier explained in
Chapter 2):

Blast blast = BlastManager.createBlast();

The BlastException class provides a mechanism for handling
exceptions thrown by any implementation when a failure or error occurs.
The RequestIdentifier class is a Java class, which provides what are
known as setter, and getter methods that provide information about the
request submitted to the Blast service. What are setter and getter methods?
In a class definition, private fields can be encapsulated so that the data
structure used can be changed at will without compromising the rest of the
code that uses that class. When the data structure is hidden, the way to
provide access to and/or modify the fields is through setter and getter
methods. For example, a class that has a field called result will provide a
setter method called setResult and a getfer method call getResult. The
RequestIdentifier class uses these methods as described above. The
structure of the application designed so far is shown in Fig. 3.4.

88

SwingBlast2

I— org
_ ifb

| blast
L Blast
——— BlastManager
L—— BlastException
L jgblast
——— JOBlast
L Requestldentifier

Fig. 3.4. Structure of the SwingBlast application

Description of Blast Classes

The Blast class extends the Observable class, which represents an
observable object, an instance of which can be observed for any changes
that occur to the object. When an observable instance changes (that is,
when an object that is being observed changes), the notifyObservers
method is called and causes the observer to be notified of the change by a
call to the observer’s update method. In this case, we want to observe the
Blast class for changes that occur during the process of submitting the
request and waiting for the result to be returned. We can then notify the
observers of the progress of the search, as well as when the results are
ready or if an error occurs.

The Blast class contains 2 abstract methods:
submitQuery()

and,

requestResult ()

Running BLAST using SwingBlast 89

that respectively take one parameter each: a Java data type called Map
for the BLAST parameters, which stores sets of elements in the form of
key-value pairs, and the identifier for the identifier that is uniquely
associated with each BLAST search. Both methods return an object of the
respective type and throw an exception if an error occurs. The Blast class
is defined in Listing 3.1.

Listing 3.1. The Blast class
package org.jfb.blast;

import java.util.HashMap;
import java.util.Observable;

public abstract class Blast extends Observable {
public abstract Object submitQuery(Map parameters)
throws BlastException;

public abstract Object requestResult(Object identifier)
throws BlastException;

}

The way to initialize the BlastManager is to provide the full class name
of the implementation through a JVM system property called
‘blast.driver’. An example of how to provide our BLAST
implementation called org.jfb.jgblast.J0Blast to the BlastManager
via a JVM system property is shown below:

Java -Dblast.driver=org.jfb.jgblast.JQBlast

The class JoBlast must be declared in the Java classpath to be able to
be found by the Java classloader. The Java classloader is responsible for
loading a Java class when it is needed. The BlastManager class is
described in Listing 3.2.

Listing 3.2. The BlastManager class
package org.jfb.blast;

public class BlastManager {
private static String blastClass = null;
private static boolean initialized = false;

public static void register(Blast blast) {
blastClass = blast.getClass().getName();

}

90

private static void loadInitialDrivers() {

final String driver =
System.getProperty("blast.driver");
if (driver == null)
return;
try {

System.out.println("BlastManager.Initialize:
+ driver);

Class.forName(driver);
} catch (Exception e) {

System.out.println("BlastManager.Initialize:
load failed: " + e);

loading

}
}
public static Blast createBlast() throws BlastException
{
if (!initialized) {
initialized = true;
loadInitialbrivers();
}
if (blastClass == null)
throw new BlastException("There 1is no driver
configured! "
+ "Please use blast.driver Java
property or Class.forName to load the driver class.");
try {

// In a multi thread environment we need to
make sure // that the class is loaded.

final Class aClass = (Class)
Class.forName(blastClass, true,
Thread.currentThread().getContextClassLoader());

return (Blast) aClass.getConstructor (new

Class{]{}).newInstance(new Object[]{});
} catch (Exception e) {
throw new BlastException(e);

}

The purpose of the register() method is to inform the BlastManager
which Blast implementation we want to use. This is done as follows:

public static void register(Blast blast) {

blastClass = blast.getClass().getName();

Running BLLAST using SwingBlast 91

Here, blast.getClass() returns an instance of class
java.lang.Class. blastClass iS an instance of java.lang.Class and
blastClass.getName () Will return the real class name which, in this case
would be org.jfb.jgblast.JQBlast.

Let’s look at the loadInitialDrivers method below:

private static void loadInitialDrivers() {

final String driver =
System.getProperty("blast.driver");
if (driver == null)
return;
try {

System.out,.println("BlastManager.Initialize:
+ driver);

Class.forName(driver);
} catch (Exception e) {

System.out.println("BlastManager.Initialize:
load failed: " + e);

}

loading

}

When the locadInitialDrivers method is called, it gets the property
blast.driver from the system and if it is not null, calls the
Class.forName() method. At that point, BlastManager knows that a
Blast driver is registered and available, otherwise an exception is thrown
with an error message. Finally, the BlastException class handles any
exceptions that arise during the BLAST search (Listing 3.3).

Listing 3.3. The BlastException class
package org.jfb.blast;

public class BlastException extends Exception {
public BlastException() {
}

public BlastException(String message) {
super (message) ;

}

public BlastException(String message, Throwable cause)

super (message, cause);

}

public BlastException(Throwable cause) {

92

super (cause) ;

Implementing JQBlast

We will now build the JoBlast application that allows users to send
multiple simultaneously BLAST queries using the classes we described
above. To implement the NCBI QBlast package, we just need to extend the
Blast class and provide an implementation of the methods as described
above. We will call the instance of the Blast class JoBlast as shown
below:

public class JQBlast extends Blast {
//implement Blast methods

}

We will create a file called gBlast. java to implement this code. It is up
to the developer of a Blast implementation to provide the code for those
methods. The developer must also register the Blast class to the
BlastManager class using a static statement that will be executed after
loading the class. A static statement is a piece of code that starts with the
Java keyword static and is followed by curly brackets (which, in this case,
holds the code that Iloads the Blast implementation called
org.jfb.jgblast.JQBlast). It is executed after the class is loaded in the
JVM:

public class JQBlast extends Blast {

static {
System.out.println("Registering " + JQBlast.class);
BlastManager.register(new JQBlast());

}
//implement Blast methods

}

The Blast engine provides a mechanism to specify the parameters for a
search (such as database type, BLAST algorithm type, E-value, etc.) and to
submit a sequence into a queue for the actual Blast operation. The above
design provides a way of accessing an instance of Blast, without the need
to know the mechanism by which the Blast operation is submitted or
performed. In this case, JoBlast is an implementation of the abstract
Blast class and that is the one that is instantiated by the BlastManager.

Running BLAST using SwingBlast 93

When a Java class is loaded, the Java classloader will run all the static
statements first, so a JoBlast instance will be created and registered to the
BlastManager. Now to allow the classloader to load that class we need to
call the java classpath using the forName method from the class Cclass, as
shown below:

static {
try {
Class.forName("org.jfb.jgblast.JQBlast");
} catch (ClassNotFoundException e) {
e.printStackTrace();

}

Alternately, we can pass the Java class name to the JVM system
property using the Java —D option and the property name “blast.driver”,
if we don’t want to hard code the name of the Blast class we would like to
use in the code.

Java -Dblast.driver=org.jfb.SwingBlast.gblast.QBlast (..)

The property is then retrieved using the getProperty method as shown
below:

System.getProperty("blast.driver");

We pass the BLAST parameters to the submitQuery() method as
follows:

public Object submitQuery (Map parameters) throws
BlastException {
String urlapiQuery = createUrlapiQuery(parameters);
setChanged();
notifyObservers("Submitting the job to the server
with query\n"
+ urlapiQuery);
String queryResult = sendQuery(urlapiQuery);

if (queryResult == null) return null;
return parseOutReqId(queryResult);

The method createUrlapiQuery() within submitQuery() generates
the HTTP-encoded request containing the specified parameters (including
the sequence specified by the user (in this case, a test sequence
“AAGTCGATAGCTCGCGCGCCGGCCGTGAGGAAAARRAAAAR),

94

CMD=Put&QUERY BELIEVE DEFLINE=yes&QUERY=%3E+Sequencel?¥7CDNA
%7C38+bp%0AAGTCGATAGCTCGCGCGCCGGCCGTGAGGAAAAAAAAASDATABASE=nr
&PROGRAM=blastn&EXPECT=0.001

The method is described below:

private String createUrlapiQuery(Map parameters) {
StringBuffer query = new
StringBuffer ("CMD=Put&QUERY_BELIEVE_DEFLINE=yes");
try {

query.append (" &QUERY=").,append (URLEncoder.encode((String)
parameters.get("sequenceText"), "UTF-8"))

.append("&DATABASE=").append((String)
parameters.get("database"))

.append("&PROGRAM=") .append((String)
parameters.get("blastType"))

.append("&EXPECT=").append((String)
parameters.get("evalue”));

} catch (UnsupportedEncodingException uee) {
uee.printStackTrace();

}

return query.toString();

}

In this case, the method returns a String object containing the sequence
to be submitted for the BLAST search, the database to be searched against,
the BLAST program to be used and the cut-off E-value for the search.

The setChanged() method in submitQuery() is derived from the
Observable class and is used to keep track of changes in the status of an
object, in this case, Blast. The observable class notifies changes in states
of objects by calling the notifyobservers() method. In this example, we
will inform the user that a search job has been submitted (with the
message, "Submitting the job to the server with query”, and appends the
urlapiQuery string to it.

notifyObservers("Submitting the job to the server with
query\n" + urlapiQuery);

Next we send the query for BLAST using the sendQuery () method:

private String sendQuery (String httpQuery) throws
BlastException {
DataOutputStream printer = null;
URLConnection urlConnection;
ByteArrayOutputStream outputStream = null;

Running BLAST using SwingBlast 95

try {

urlConnection = new URL(blastUrl).openConnection();

urlConnection.setDolInput (true);

urlConnection.setbDoQutput(true);

urlConnection.setUseCaches(false);

urlConnection.setRequestProperty("Content-Type",
"application/x-www-form-urlencoded");

urlConnection.setRequestProperty("Content-Length”,
+ httpQuery.length());

printer = new
DataOutputStream(urlConnection.getOutputStream());

printer.writeBytes (httpQuery);

(N1}

// Read the result
BufferedReader reader = null;
reader = new BufferedReader (new
InputStreamReader (urlConnection.getInputStream()));
outputStream = new ByteArrayOutputStream();
String str;
while ((str = reader.readLine()) != null) {
outputStream.write(str.getBytes());
}
} catch (MalformedURLException mue) {
mue.printStackTrace();
throw new BlastException(blastUrl +
} catch (IOException ioel) {
iocel.printStackTrace();
throw new BlastException("Could not get the
connection or write to it");
} finally {
try {
printer.close();
printer = null;
} catch (IOException ignore) {
ignore.printStackTrace();

is malformed");

}
}
return outputStream != null ? outputStream.toString()
null;

}

The sendQuery() method returns a String carrying the results of the
operation:

String queryResult = sendQuery(urlapiQuery);

We then parse the result (unless no hits were found) using the
parseOutReqId() method:

if (queryResult == null) return null;

96

return parseOutReqld(queryResult);

The parseoutReqld() method parses the RID and RTOE from the
returned string which is of type:

QOBlastInfoBegin RID = 1097884888-2134-
17842894979.BLASTQ4 RTOE = 30QBlastInfoEnd

and returns the RequestIdentifier:

private RequestIdentifier parseOutReqId(String string) {
String rid = null;
String rtoe = null;

try {
RE regex = new

RE("QBlastInfoBegin(\\s*)RID(\\s*)=\\2(\\S*) (\\s*)RTOE\\2=\\2
(.*)QBlastInfoEnd");
boolean matched = regex.match(string);

if (matched) {
rid = regex.getParen(3);
rtoe = regex.getParen(5);

}
} catch (RESyntaxException ree) {
}
if (rid == null || rtoe == null)
return null;
return new RequestIdentifier(rid,
Integer.parseInt(rtoe));

}

Once we obtain the RID and RTOE, we wait for a period of time
specified by the RTOE before trying to access the results.

public Object requestResult(RequestIdentifier identifier)
throws BlastException {
if (identifier == null)
throw new BlastException("Cannot get the request
identifier");

setChanged();

notifyObservers("Getting from JQBlast Service the RID
" + identifier.getRid() + ") and RTOE " +
identifier.getRtoe() + ").");

// Wait the rtoe time before sending any request back
to the server

try {
long timeOut = identifier.getRtoe() +

Running BLAST using SwingBlast

97

identifier.getTime();

if (timeOut > System.currentTimeMillis()) {
int timeLeft = ((int) (timeOut
System.currentTimeMillis())) * 1000;

synchronized (this) {
while (timeLeft > 0) {
wait(waitTime);
setChanged();
notifyObservers("Time left " + ((timeLleft
waitTime) / 1000) + "s before requesting the result");
}
}
}

} catch (InterruptedException ie) {
ie.printStackTrace();

}

setChanged();

notifyObservers("Requesting the result for rid:
identifier.getRid());

StringBuffer query =
StringBuffer("CMD=Get&FORMAT_TYPE=XML");

query.append("&RID=" + identifier.getRid());

String ri = query.toString();

String queryResult = null;
String status = null;

boolean hasResult = false;
int ct = 0;
RE regex = null;
try {
regex =
RE("QBlastInfoBegin(\\s*)Status=(.*)0BlastInfoEnd");
} catch (RESyntaxException ree) {

}

synchronized (this) {
while (!hasResult) {
status = null;
queryResult = sendQuery(ri);
boolean matched = regex.match(queryResult);

if (matched) {
status = regex.getParen(2);
}
hasResult = !"WAITING".equals(status);
if (hasResult) {
break;

new

new

98

}

setChanged();

notifyObservers("Waiting " + NUMBER_OF_SECOND +

seconds before re-trying (total waiting time:
NUMBER_OF SECOND) + "s).");
try {
wait (NUMBER_OF SECOND * 1000);
} catch (InterruptedException iel) {
iel.printStackTrace();

}
}

}
if ("UNKNOWN"'.equals(status)) {

throw new BlastException("Result for
identifier.getRid() + " failed.");
}
setChanged();
notifyObservers("Getting back the blast
XML") ;
return queryResult;

}

"

+ (ct +=
RID " +
result in

The complete code for JQBlast. java is shown in Listing 3.4.

Listing 3.4. JQBlast.java
package org.jfb.jgblast;

import org.apache.regexp.RE;

import org.apache.regexp.RESyntaxException;
import org.jfb.blast.Blast;

import org.jfb.blast.BlastException;

import org.jfb.blast.BlastManager;

import java.io.BufferedReader;

import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;
import java.io.File;

import java.io.FileOutputStream;
import java.io.IOException;

import java.io.InputStreamReader;
import java.io.OutputStream;

import java.io.UnsupportedEncodingException;
import java.net.MalformedURLException;
import java.net.URL;

import java.net.URLConnection;

import java.net.URLEncoder;

import java.util.HashMap;

public class JQBlast extends Blast {

Running BLAST using SwingBlast 99

static {
System.out.println("Registering " + JQBlast.class);
BlastManager.register(new JQBlast());

}

private static final String blastUrl =
"http://www.ncbi.nlm.nih.gov/blast/Blast.cgi";
private static final int NUMBER_OF_SECOND = 3;

public Object submitQuery(Map parameters) throws
BlastException {
String urlapiQuery = createUrlapiQuery(parameters);
setChanged();
notifyObservers("Submitting the job to the server
with query\n" + urlapiQuery);
String queryResult = sendQuery(urlapiQuery);

if (queryResult == null) return null;
return parseQutReqId(queryResult);

}
final static int waitTime = 2000;

public Object requestResult(Object identifier) throws
BlastException {
if (identifier == null || !(identifier instanceof
RequestIdentifier))
throw new BlastException("Cannot get the
request identifier " + identifier);

RequestIdentifier rIdentifier = (RequestIdentifier)
identifier;
setChanged() ;
notifyObservers("Getting from JQBlast Service the
RID (" + rIdentifier.getRid()
+ ") and RTOE (" + rIdentifier.getRtoe() +

n).n);

// Wait the rtoe time before sending any request
back to the server

try {
long timeOut = rIdentifier.getRtoe() +

rIdentifier.getTime();

if (timeOut > System.currentTimeMillis()) {
int timeLeft = ((int) (timeOut -
System.currentTimeMillis())) * 1000;

synchronized (this) {
while (timeLeft > 0) {
wait(waitTime);
setChanged() ;
notifyObservers("Time left " +

100

((timeLeft -= waitTime) / 1000) + "s before requesting the

result");

}
}

} catch (InterruptedException ie) {
ie.printStackTrace();

}

// do a loop every 3 seconds send the request until

we get the status = READY and the blast result
// End of loop
setChanged();

notifyObservers("Requesting the result for rid:

rIdentifier.getRid());
StringBuffer query =
StringBuffer ("CMD=Get&FORMAT_TYPE=XML");
query.append("&RID=" + rIdentifier.getRid());
String ri = query.toString();

String queryResult = null;
String status = null;

boolean hasResult = false;
int ct = 0;
RE regex = null;
try {
regex =
RE("QBlastInfoBegin(\\s*)Status=(.*)QBlastInfoEnd");
} catch (RESyntaxException ree) {
// We ignore it since we've checked the
already!
}

Runtime runtime = Runtime.getRuntime();

synchronized (this) {
while (!hasResult) {
status = null;
queryResult = sendQuery(ri);

LI

new

new

regex

boolean matched = regex.match(queryResult);

if (matched) {
status = regex.getParen(2);

}
hasResult = !"WAITING".equals(status);
if (hasResult) {
break;
}
setChanged() ;

notifyObservers("Waiting
NUMBER_OF_SECOND

Running BLAST using SwingBlast 101

+ " seconds before re-trying (total

waiting time: " + (ct += NUMBER_OF_SECOND) + "s). "
+ runtime.freeMemory() + " bytes
left");
try {
wait (NUMBER_OF SECOND * 1000);
} catch (InterruptedException iel) {
jel.printStackTrace();
}
}
}
if ("UNKNOWN".equals(status)) {
throw new BlastException("Result for RID " +
rIdentifier.getRid() + " failed.");
}
setChanged();
String fileName = createTempFileName();
try {
OutputStream outputStream = new

FileOutputStream(fileName) ;
outputStream.write(queryResult.getBytes());
} catch (IOException ioe) {
throw new BlastException("Saving result for RID
" 4+ rIdentifier.getRid()
+ " into " + fileName + " failed.",
ioe);
}
notifyObservers("Getting back the blast result in
XML " + queryResult.length());
return fileName;

}

private String sendQuery(String httpQuery) throws
BlastException {
DataOutputStream printer = null;
URLConnection urlConnection;
ByteArrayOutputStream outputStream = null;
String fileName = null;

try {
urlConnection = new
URL(blastUrl).openConnection();
urlConnection.setDoInput (true);
urlConnection.setDoOutput(true);
urlConnection.setUseCaches(false);
urlConnection.setRequestProperty("Content-

Type", "application/x-www-form-urlencoded");
urlConnection.setRequestProperty("Content-
Length", "" + httpQuery.length());
printer = new

DataOutputStream(urlConnection.getOutputStream());
printer.writeBytes (httpQuery);

102

// Let's read the result

BufferedReader reader = null;

reader = new Buf feredReader (new

InputStreamReader (urlConnection.getInputStream()));

outputStream = new ByteArrayOutputStream();

String str;

while ((str = reader.readLine()) != null) {
outputStream.write(str.getBytes());

}

} catch (MalformedURLException mue) {
mue.printStackTrace();
throw new BlastException(blastUrl +

" is
malformed");
} catch (IOException ioel) {
ioel.printStackTrace();
throw new BlastException("Could not get the
connection or write to it");
} finally {
try {
printer.close();
printer = null;
} catch (IOException ignore) {
ignore.printStackTrace();
}
}

return outputStream
outputStream.toString();
}

private RequestIdentifier parseOutReqIld(String string)

null ? null

String rid = null;
String rtoe = null;

try {
// <l!--QBlastInfoBegin RID = 1097884888~

2134-17842894979.BLASTQ4 RTOE = 300BlastInfoEnd-->

RE regex = new
RE ("QBlastInfoBegin(\\s*)RID(\\s*)=\\2(\\S*) (\\s*)RTOE\\2=\\2
(.*)QBlastInfoEnd");

boolean matched = regex.match(string);

if (matched) {
rid = regex.getParen(3);
rtoe = regex.getParen(5);
}
} catch (RESyntaxException ree) {
// We ignore it since we checked the regex
already!
}
if (rid == null || rtoe == null)
return null;
return new RequestIdentifier(rid,

Running BLAST using SwingBlast 103

Integer.parselInt(rtoe));

private String createUrlapiQuery(Map parameters) {

StringBuffer query = new
StringBuffer ("CMD=Put&QUERY BELIEVE_DEFLINE=yes");

try {
query.append("&QUERY=") .append(URLEncoder.encode((String)

parameters.get("sequenceText"), "UTF-8"))
.append("&DATABASE=").append((String)
parameters.get("database"))
.append("&PROGRAM=") .append((String)
parameters.get("blastType"))
.append("&EXPECT=").append((String)
parameters.get("evValue"));
} catch (UnsupportedEncodingException uee) {
uee.printStackTrace();
}

return query.toString();

}

private String createTempFileName() {
return System.getProperty("java.io.tmpdir") +
File.separator
+ "blast-" + System.currentTimeMillis() +
".xml";

}

private static String packBy(int i, String s) throws
RESyntaxException {

String substIn = "[a-zA-Z]{" + i + "}";

String substTo = "$0 ";

RE re = new RE(substIn);

return re,subst(s, substTo,
RE.REPLACE_BACKREFERENCES) ;

}
}

Enhancing the SwingBlast Application

Let’s also take a look at the code that generates the GUI for the
application. The swingBlast Version 1.3 we created in the last Chapter is
shown in Fig. 3.5.

104

SwingBlast Help
Sequence
Program JlastN BlastX IBlastX BlastP
Database
E-wvalue .00
| Clear

£ SwingBlast Version 1.3

Fig. 3.5. SwingBlast version 1.3

We will enhance swingBlast in a number of ways in this Chapter. In
particular, we will:

1.

Introduce a Format button to convert the entered sequence into
Fasta format. In the earlier version, the swingBlast application
required the user to lose focus away from the text area in order to
perform the formatting.

Add a Submit button to send sequences for BLAST searches.

Add code behind the BLAST programs (BLASTN, BLASTX, etc.)
so that checking the boxes will enable the user to run the
corresponding BLAST programs.

4. Add functionality to prompt the user to save BLAST search results.

We will call the resulting application swingBlast Version 2.1. We add
the button widgets we need for the swingBlast application as we did
previously.

Running BLAST using SwingBlast 105

private JButton formatBtn;
formatBtn = new JButton("Format Sequence");

To place the button in the GUI, we use the Jpanel object:

JPanel panel = new JPanel();
panel.add(formatBtn});
seqPanel.add(panel, BorderLayout.CENTER);

To format a sequence, we first need to know when the text area is
populated with a sequence. To do this we implement an event listener,
which was explained in Chapter 2.

private void addListeners() {
formatBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
// Check if sequence is DNA, RNA or protein
// Retrieve text entered in the text area
String sequenceText = sequencelrea.getText();

if (sequenceText == null || sequenceText.length()
LY O) {
cleanAllParameters();
return;
}
}
}
}

The cleanAllParameters() method clears the text in the text area and
disables the enableFunctions() method which checks the entered
sequence for type, that is, DNA, RNA or protein.

private void cleanAllParameters() {
sequenceArea.setText ("");
enableFunctions(-1);

}

Next, let’s add the code to format the input sequence. We will program
the format button to cause the sequence in the text area to be wrapped into
lines of 50 bases each and add a Fasta header at the top using the code
below:

private StringBuffer format(String sequence) {
int i1 = 1;
final int seqLen = sequence.length();
StringBuffer sb = new StringBuffer(seqLen);
if (seqLen > 50) {
char[] chars = sequence.toCharArray();

106

We had described the logic to program the check boxes for the various
BLAST algorithms based on the input sequence earlier in Chapter 2. The
application at this stage appears as is shown in Fig. 3.6. Let's test the
application with a fragment of the human cystic fibrosis transmembrane
conductance regulator (CFTR) mRNA sequence (gi: 90421312) we had
described in Chapter 2. Compile and run the application and paste the

for (int j = 0; j < chars.length; j++) {
sb.append(chars[j]);

if (i++ % 50 == 0) {
sb.append("\n");
}

}
} else {
sb.append(sequence);

}

return sb;

sequence in the text area (Fig. 3.7).

< SwingBlast Version 2.1 9(i=1t3
SwingBlast Help
AATTGGAAGCARMTGACATCACAGCAGGTCAGAGAMAAGGGTTGA
GCGGCAGGCACCCAGAGTAGTAGG
TCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGAD
CCCAGCGCCCGAGAGACCATGCAGAG
GTCGCCTCTGGWGCCAGCGHGTCTCcmcm‘m‘rm
CTGGACCAGACCAATTTTGAGGARA

Sequence GGATACAGACAGCGCCTGGNUTGTCAGACATATACCMATCCL:\J

D

TCTGTTGATTCTGCTGACAATCTAT
CTGAMMAATTGGAAAGAGAATG GGATAGAGAGCTGGCTTCAAAG,

PAATCCTARBACTCATTAATGCCCT J
TCGGCGATGTTTTITCTGGAGATTTATGTTCTATGGAATCTTTTTA
ATTTAGGGGAAGTCACCAAAGCA =
Format Sequence
Program' []BlastiN [BlastX [] rotastX [BlastP [TRlastN

Fig. 3.6. SwingBlast Version 2.1

The formatted sequence is shown below (Fig. 3.7).

Running BLAST using SwingBlast 107

< SwingBlast Version 2.1
SwingBlast Help

=Sequencel |DNA[420 bp
AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAMAGGGTTGAGCGE
CAGGCACCCAGAGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACG
GCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTS
GARAAGGCCAGCGTTGTCTCCARACTTTTTTTCAGCTGGACCAGACCAAT
TTTGAGGAMGGATACAGACAGCGCCTGGAATTGTCAGACATATAC CARA
Sequence oo CTTCTGTTGATTCTGCTGACARTCTATOTGAAAAATTGGAAAGAGAR
TGGGATAGAGAGCTGGCTTCARMGAAAAATC CTAMACTCATTAATGCCCT
TCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTTTTATATT
TAGGGGAAGTCACCAAAGCA

Program [|BlastN [(IBlastX [TBlastX | | tlasi [10lasin

| Clear | Submit

Fig. 3.7. Fasta formatted DNA sequence

To align the Fasta format sequence properly, we had described the use
of a monospaced font earlier for the DNA alphabet:

final Font sf = sequenceArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(),
sf.getSize());

sequenceArea.setFont (f);

An explicit monospace font such as Courier can also be used provided it
is installed on your machine. The application with the sequence formatted
in monospace font is shown in Fig. 3.8.

108

= SwingBlast Yersion 2.1 Ej@@
SwingBlast Help

=Sequencel |DNA| 420 bp
BATTGGAAGCAAATGACATCACAGCAGGTCAGAGARALAGGGTTGAGCGE
CAGGCACCCAGAGTAGTAGSTCTTTGGCATTAGGAGCTTGAGCCCAGACG
GCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGLCTCTG
GARAAAGGCCAGCGTTGTCTCCAMACTTTTTTTCAGCTGGACCAGACCAAT
Sequence TTTGAGGARAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAL
TCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAALATTGGAALGAGAL
TGGCATAGAGAGCTGGCTTCAAAGAARMATCCTAAACTCATTAATGCCCT
TCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTITTTATATT
TAGGGGAAGTCACCARAGCA

Format Sequence |

Program [|BlastN [|BlastX [TBlast¥ | | “iaci0 | 1aiasi

‘ Clear || Submit

Fig. 3.8. Fasta formatting with a monospace font

Note that the application first checks if the sequence is in Fasta format
before applying the formatting. If a sequence that is pasted is already in
Fasta format, clicking the "Format Sequence" button does not have any
effect. The user can now select one or more of the available BLAST
options and hit Submit to run the search. Let’s run a search with the partial
CFTR sequence using BLASTN and BLASTX using SwingBlast 2.1 (Fig.
3.9).

Running BLAST using SwingBlast 109

£ SwingBlast Version 2.1
SwingBlast Help

Secquencel |DNA| 420 bp

TTGGAAGCAAATGACATCACAGCAGGTCAGAGAARAMAGGGTTGAGCGE
CAGGCACCCAGAGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACG
GCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTG
GAAMAGGCCAGCGTTGTCTCCAAACTTTTTTTCAGCTGGACCAGACCAAT
TTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAL
TCCCTTCTGTTGATTCTGCTGACAATC TATCTCAARAATTGCARAGAGAL
TGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTARACTCATTAATGCCCT
TCGGCGATGTTT T TTCTGGAGATTTATGTTCTATGGAATCTTTTTATATT
TAGGGGAAGTCACCAAAGCA

Sequence

Format Sequence |

Program [v] BlastN [viBlastX [TBlastX [| Giasii [i8lasi

| Clear | Submit

Fig. 3.9. Running a BLASTN and BLASTX search

We get a notification once each of the requested BLAST search is
complete as shown below for the BLASTN search (Fig 3.10). After each
analysis is complete, the application also prompts the user to save the
results of the search in a local text file (Fig. 3.11 - 3.12).

@ blastn BLAST for the sequence starting with >Sequence1|DNA|420 bp

AATTGGAA has finished!

Fig. 3.10. BLAST search status notification

110

s | @ecEE

File Name: ﬁastn_ra sults.bd 1

Files of Type: | AllFiles |

Fig. 3.11. Saving BLAST results in a local file

Fig. 3.12. Saving BLAST results in a local file

Note that if a file of that name already exists, the application warns the
user and provides an option to overwrite the existing file or save it with a
different name (Fig. 3.13).

Saving BLAST Result

_ C:blastiblastn_results.txt already exists.
Do you want to overwrite?
To rename the file select "No™,

Fig. 3.13. Saving BLAST results in a different file

Running BLAST using SwingBlast 111

This functionality is implemented within the saveBlast() function as
shown in Listing 3.5.

Listing 3.5. The saveBlast() function

private void saveBlast(String tmpFileName) {
final String fileNameFromUser = getFileNameFromUser();
if (fileNameFromUser == null)
return;

final File tmpFile = new File(tmpFileName);
final File userFile = new File(fileNameFromUser);
if (userFile.exists()) {
String errMes = fileNameFromUser + already
exists.\nDo you want to overwrite?\n" + "To rename the file
select \"No\".";

"

int choice = JOptionPane.showConfirmDialog(this,
errMes, "Saving BLAST Result", JOptionPane.YES_NO OPTION);
if (choice == JOptionPane.YES_OPTION) {

userFile.delete();
tmpFile.renameTo (userFile);
} else {
saveBlast (tmpFileName) ;
}
} else {
tmpFile.delete();
JOptionPane.showMessageDialog(SequenceForm2 2.this,
"BLAST result saved in " + fileNameFromUser);
}
}

If the user doesn’t want to overwrite an existing file, a new file name
must be supplied. This is implemented in the getFileNameFromUser ()
function described below (Listing 3.6).

Listing 3.6. The getFileNameFromUser() function

private String getFileNameFromUser() {
JFileChooser fc = new JFileChooser();
if (fc.showSaveDialog(this)
JFileChooser .APPROVE_OPTION) {
return fc.getSelectedFile().getAbsolutePath();
} else {
return null;

}

il
il

}

112

The BLAST results can be viewed in their raw format (as saved in the
text file above) using a text editor (Fig. 3.14) for parsing to diplay the
results in a graphical format. The complete code for swingBlast version
2.1 is shown in Listing 3.7.

B blastn2.1xt - Notepad

Fle Edt Format Miew Help

7aml version="1.0"7><!|DOCTYPE Blastoutput PUBLIC "-//NCBI//NCBI BlastOutput/EN" A
‘nNeBI_Blastoutput. drd'><Blastoutput> <Blastoutput_programs>hlastn</Blastoutput_proarams:
<Blastoutput_version>blastn 2.2.10 [0ct-19-2004]</Blastoutput_version>
<Blastoutput_reference>~Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A.
schaffer, ~3inghui zhang, zheng Zhang, webb Millar, and pavid 3. Lipman (1967},
~&4quot;Gapped BLAST and PSI-BLAST: a new generation of protein database
search~programséquot;, Nucleic Acids Res. 25:3389-3402, </Blastoutput_reference>
<Blastoutput_dbenr</Blastoutput_db> <Blastoutput_guery-

10>gi| 6993995 | ref|NM_000492. 2| </Blastoutput _guery-ID> <B]ast0utput_auery-def:HUmo
sapiens cystic fibrosis transmembrane conductance regulator, ATP-binding cassette (sub-
family C, member 7) (CFTR), mRNA</Blastoutput_guery-defs <Blastoutput_query-
Ten=61l2%9</8lastoutput_query-len> <BTastOuTtput_params: <Parameterss:
<Parameters_expect>0. 00l</Parameters_expect> <Parameters_sc-match>l</Parameters_sc-
matchs> <Parameters_sc-mismatch>-3</Parameters_sc-mismatch> <Parameters_gap-
open:5</Parameters_gap-open: <Parameters_gap-extend>2</Parameters_gap-extends>
</Parameters> </Blastoutput_param> <Blastoutput_iterationss <Iterations
<Iteratfon_iter-nums>l</Iteration_iter-nums: <Iteration_hits: <HiT>
<Hit_nums=1</Hit_nums> <Hit_id=gi|6995995 | ref | MM_000492. 2| </Hit_id-
<Hit_def>Homo sapiens cystic fibrosis transmembrane conductance regulator, ATP-binding
cassette (sub-family C, member 7) (CFTR), mrma</Hit_defs

<Hit_accession=Nm_000492</Hit_accession> <HiT_len>61l29</Hit_len>

<Hit_hsps> <HSp> <HSp_num>1</Hs p_num> <Hsp_bit-

scorex12150.3</Hsp_bit-score> <Hsp_score>6l29</Hsp_score>

<Hsp_evaluex0</Hsp_evalues <Hsp_query-from>1< Hs&_juer‘y—frmy

<HSp_fjuery-to>612 ‘:/H‘SP_?UEP)«'—(O} <Hsp_hit-fromsl</Hsp_hit-Trom:

<Hsp_hit-to»6129</Hsp_hit-to> <Hsp_query-frames>l</Hsp_gquery-frame>
<Hsp_hit-frame>1</Hsp_hit-frame> <Hsp_identity»6129</Hsp_identity>

<Hsp_positive»6129</Hsp_positives <Hsp_align-Ten>6129</Hsp_align-len>

<HEP_05e0>AAT TGEAAGCALAT GAC AT CACAGC AGGTCAGAGAAMAAGEET TEAGCGELAGGCACCCAGAGT AGTAGGTCTTTGGCA
TTAGGAGCT TEAGCCCAGACGGCCCT AGCAGEEACCCCAGCGCCCGARAGACCATGCAGAGETCGCCTCTGRAAMAGGCCAGCGTTGTC
TOCAAACTTTT T T TCAGCTGLACCAGACCAATT T TGAGGAAAGGAT ACAGAC AGCGCCTGEAAT TGTCAGACATAT ACCARATCCCTTC
TETTEATTCTGCTGACAATCTATCTGAAAAAT TGGAAAGAGAATGGEAT AGAGAGCTGGCT TCAAAGAAAMATCCTAAACTCATTAATG
T T GG GATGT T T T TTCTGGAGATTTATGT TCT AT GEAATCTTTT TATAT T TAGGGGAAGT CACC AMAGCAGT ACAGCCTCTCTTA
CTGRGGAAGAATCAT AGCT TCCTATGACCCGGAT AAC AAGGAGGAACGLTCTATCGOGATTTATCTAGGCATAGGLT TATGLCTTCTCTT
TAT TG GAGEACAC T T T ACACCCAGCCAT T T TTGGOC T TCATCACAT TRGAATGCAGATGAGAAT AGCTATGTTTAGTTTGATTT

Fig. 3.14. Viewing saved BLAST results in text format

Listing 3.7. SwingBlast Version 2.1
package org.jfb.swingblast2;

import org.apache.regexp.RE;

import org.apache.regexp.RESyntaxException;
import org.jfb.blast.Blast;

import org.jfb.blast.BlastException;

import org.jfb.blast.BlastManager;

import org.jfb.jgblast.RequestIdentifier;

import javax.swing.*;

import java.awt.*;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.Observable;

import java.util.Observer;

public class SwingBlast2_ 1 extends JFrame {

Running BLAST using SwingBlast 113

private static final String APP_NAME = "SwingBlast";
private static final String APP_VERSION = "Version
2,1";

private static final Dimension LABEL_PREFERRED SIZE
new Dimension(57, 16);

private static final Dimension COMBO_PREFERRED_SIZE
new Dimension(60, 25);

private static final Dimension CP_PREF_SIZE = new
Dimension(480, 380);

il

private static final int TYPE_DNA 0
private static final int TYPE_RNA = 1
private static final int TYPE_PROTEIN = 2;

~ e

private static final String[] BLAST PROGRAMS_DNA = new
String[]{"BlastN", "BlastX", "TBlastX"};

private static final String[] BLAST PROGRAMS PROTEIN =
new String[]){"BlastP", "TBlastN"};

private static final Stringl[] DATABASES = new
String{]{"nr", "est human"};

private static final String[] EVALUES = new
String[){"0.001", "0.01", "O0.1", "1", "10", "100"};

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;

private JCheckBox[] chbDna;
private JCheckBox[] chbProtein;
private JComboBox cobDbs;
private JComboBox cobEvalues;

private JButton submitBtn;
private JButton formatBtn;
private JButton clearBtn;

private JMenultem aboutItem;

private JMenultem quitItem;

private static final double SEQ_THRESHOLD = 0.85;

private static final int TYPE_UNKNOWN = -1;

private int typeOfSequence;

private static final String SEQ_HEADER_GEN =
">Sequencel|";

private static final int SUB_MAX = 30;

static {

try {
Class.forName("org.jfb.jgblast.JQBlast");

} catch (ClassNotFoundException e) {
e.printStackTrace();

}

114

public SwingBlast2_1() {
super();

}

private void seqgFormInit() {
setTitle (APP_NAME + " " + APP_VERSION);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setOpaque(true);
newContentPane.setLayout (new BorderLayout());

setContentPane (newContentPane);

// Add the menu bar.

JMenuBar menu = new JMenuBar();

JMenu swingBlastMenu = new JMenu(APP_NAME);
quitItem = new JMenultem("Quit");
swingBlastMenu.add(quitItem);
menu.add(swingBlastMenu) ;

JMenu helpMenu = new JMenu("Help");
aboutItem = new JMenultem("About");
helpMenu.add(aboutItem);
menu.add(helpMenu) ;

setJMenuBar (menu);

// Create the seqLbl pane

JPanel sequencePanel = new JPanel();

JLabel seqLbl = new JLabel("Sequence");

sequenceArea = new JTextArea();

sequenceArea.setLineWrap(true);

final Font sf = sequenceArea.getFont();

Font f = new Font("Monospaced", sf.getStyle(),
sf.getSize());

sequenceArea.setFont (f);

scrollPaneArea = new JScrollPane(sequenceArea);

scrollPaneArea.setPreferredSize(new Dimension(300,
200));

formatBtn = new JButton("Format Sequence");

sequencePanel.setLayout (new
BoxLayout (sequencePanel, BoxLayout.LINE_AXIS));
sequencePanel.add(seqgLbl);
sequencePanel.add(Box.createRigidArea (new
Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

JPanel seqPanel = new JPanel();
segPanel.setLayout(new BorderLayout());
seqPanel.add(sequencePanel, BorderLayout.NORTH);
JPanel panel = new JPanel();
panel.add(formatBtn);

Running BLAST using SwingBlast 115

segPanel.add(panel, BorderLayout.CENTER);

//Lay out the buttons from left to right.
JPanel buttonPane = new JPanel();
submitBtn = new JButton("Submit");
clearBtn = new JButton("Clear");

buttonPane.setLayout (new BoxLayout (buttonPane,
BoxLayout.LINE_AXIS));

buttonPane.add(Box.createHorizontalGlue());

buttonPane.add(Box.createRigidArea(new
Dimension(10, 0)));

buttonPane.add(clearBtn);

buttonPane.add(submitBtn);

JPanel jPanel = new JPanel();
jPanel.setLayout (new BorderLayout());
jPanel.setBorder (BorderFactory.createEmptyBorder (0,
10, 10, 10));
jPanel.add(seqPanel, BorderLayout.NORTH);
jPanel.add(createProgramPanel(),
BorderLayout .CENTER}) ;
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredSize(CP_PREF_SIZE);

//Display the window.

pack();

Dimension screenSize =
Toolkit.getDefaultToolkit().getScreenSize();

setLocation((screenSize.width - CP_PREF_SIZE.width)

/2,
(screenSize.height - CP_PREF_SIZE.height) /
2);
setVisible(true);
addListeners();
}
private JPanel createProgramPanel() {
// Let's get the program panel using the same
layout
JPanel programPanel = new JPanel();
JLabel program = new JLabel("Program");
program,setPreferredSize (LABEL_PREFERRED_SIZE);
chbDna = new JCheckBox{[BLAST_PROGRAMS DNA.length];
String blastProgram;
for (int i = 0; i < BLAST_ PROGRAMS DNA.length; i++)
{

blastProgram = BLAST_ PROGRAMS_DNA[i];
chbDna[i] = new JCheckBox(blastProgram);
chbDna[i].setMaximumSize (COMBO_PREFERRED_SIZE);

116

chbProtein = new
JCheckBox[BLAST PROGRAMS_PROTEIN.length];
for (int i = 0; i < BLAST PROGRAMS_ PROTEIN.length;
i++) {
blastProgram = BLAST PROGRAMS_PROTEIN[i];
chbProtein[i] = new JCheckBox(blastProgram);

chbProtein[i]).setMaximumSize (COMBO_PREFERRED_SIZE);
}

programPanel.setLayout (new BoxLayout (programPanel,
BoxLayout.LINE AXIS));
programPanel.add(program) ;
programPanel.add(Box.createRigidArea(new
Dimension(10, 0)));
for (int i = 0; i < chbDna.length; i++) {
programPanel.add(chbDna(il});
programPanel.add(Box.createRigidArea(new
Dimension(5, 0)));
}
for (int i = 0; i < chbProtein.length; i++) {
programPanel.add(chbProtein[i]);
if (i + 1 < chbProtein.length)
programPanel.add(Box.createRigidArea(new
Dimension(5, 0)));

programPanel.add(Box.createHorizontalGlue());

JPanel paramPanel = new JPanel();

paramPanel.setLayout (new BoxLayout (paramPanel,
BoxLayout.PAGE_AXIS));

paramPanel.add(programPanel) ;
paramPanel.add(Box.createRigidArea(new Dimension(0,

5)))i

// Create the database panel using the same layout
JPanel databasePanel = new JPanel();

JLabel database = new JLabel("Database”);
database.setPreferredSize(LABEL_PREFERRED_SIZE);
cobDbs = new JComboBox (DATABASES);
cobDbs.setMaximumSize (COMBO_PREFERRED_SIZE);

databasePanel.setLayout (new
BoxLayout (databasePanel, BoxLayout.LINE AXIS));
databasePanel.add(database);
databasePanel.add(Box.createRigidArea(new
Dimension(10, 0)));
databasePanel.add(cobDbs);
databasePanel.add(Box.createHorizontalGlue());
paramPanel.add(databasePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

5)))i

Running BLAST using SwingBlast 117

// Create the E-Value panel using the same layout
JPanel evaluePanel = new JPanel();

JLabel eValue = new JLabel("E-value");
eValue.setPreferredSize(LABEL_PREFERRED_SIZE);
cobEvalues = new JComboBox(EVALUES);
cobEvalues.setMaximumSize (COMBO_PREFERRED_SIZE) ;

evaluePanel.setLayout (new BoxLayout (evaluePanel,
BoxLayout.LINE_AXIS));

evaluePanel.add(eValue);

evaluePanel.add(Box.createRigidArea(new
Dimension(10, 0)));

evaluePanel.add(cobEvalues);

evaluePanel.add(Box.createHorizontalGlue());

paramPanel.add(evaluePanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,

5)))i

enableFunctions (TYPE_UNKNOWN) ;
return paramPanel;

}

private void addListeners() {
guitItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit (0);
}
b

aboutItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(SwingBlast2_1l.this, APP NAME +
" " + APP VERSION,
"About " + APP_NAME,
JOptionPane.INFORMATION MESSAGE);
}
})i

submitBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

StringBuffer errMes = new
StringBuffer ("<HTML>Please provide the following
parameters:
");

String sequence = sequenceArea.getText();

boolean misPar = false;

if (sequence == null || sequence.length()

errMes.append("~ Sequence
");
misPar = true;

118

String database = (String)

cobDbs.getSelectedItem();
String[] blastTypes = getBlastTypes();

if (blastTypes == null || blastTypes.length
==0){
errMes.append("- blast
");
misPar = true;
}
final String endOfPleaseMes = "</html>";

errMes .append(endOfPleaseMes);
if (misPar) {

JOptionPane.showMessageDialog(SwingBlast2_ 1l.this, errMes);
return;

}

String evalue = (String)

cobEvalues.getSelectedItem();
runBlasts(sequence, blastTypes, database,

evalue);
}
1)
clearBtn.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
cleanAllParameters();
}
i
formatBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
// Check sequence type
// Retrieve text entered in the text area
final String sequenceText =
sequenceArea.getText();
if {sequenceText == null ||
sequenceText.length() == 0) {
cleanAllParameters();
return;
}

// Format sequence in FASTA format
int idx = sequenceText.indexOf(">");
final boolean fastaFormatted = idx != -1;
String header = null;
String sequence = "";
if (fastaFormatted) {

int returnIdx =

sequenceText.indexOf ("\n");

if (returnIdx != -1) {
header = sequenceText.substring(0,

returnIdx);
sequence =

Running BLAST using SwingBlast 119

sequenceText.substring(returnldx + 1,
sequenceText.length()).replaceAll("\\s", "").toLowerCase();

// Check if sequence entered
updateSequenceArea (header, sequence,
fastaFormatted);
} else {
updateSequenceArea(SEQ HEADER_GEN,
sequenceText.toLowerCase(), fastaFormatted);
}
}
)i
}

private void updateSequenceArea(String header, String
sequence, boolean fastaFormatted) {
String seqText;
if (sequence.length() == 0)
return;

// Retrieve sequence type
this.typeOfSequence = TYPE UNKNOWN;
try {
this.typeOfSequence =
getSequenceType(sequence);
} catch (RESyntaxException rese) {
rese.printStackTrace();

}

String type = null;
String unitOfLength = null;

switch (this.typeOfSequence) {

case TYPE_ DNA:
type = "DNA";
unitOfLength
break;

case TYPE RNA:
type = "RNA";
unitOfLength = " bp";
break;

case TYPE PROTEIN:
type = "Protein";
unitOfLength = " aa";
break;

default:
type = "N/A";
unitOfLength = " N/A";

" bp“;

}

if (!fastaFormatted) {
seqText = header + type + " +
sequence.length() + unitOfLength + "\n" +

120

format (sequence.toUpperCase());
} else {
seqText = header + "\n" +
format (sequence.toUpperCase());

}

// Display results in the sequence area
sequenceArea.setText (seqText);

enableFunctions(this.typeOfSequence);

}

private StringBuffer format(String seq) {
int i = 1;
String sequence = seq.replaceAll("\n", "");
final int seqglen = sequence.length();
StringBuffer sb = new StringBuffer(seqlLen);
if (seqLen > 50) {
char[] chars = sequence.toCharArray();
for (int j = 0; j < chars.length; j++) {
sb.append(chars{jl);

if (i++ % 50 == 0) {
sb.append("\n");
}

} else {
sb.append(sequence);

}

return sb;

}

private void runBlasts(final String sequence, String]]
blastTypes, String database, String evalue) {
Map param = new HashMap();
param.put("sequenceText", sequence);
param.put("database", database);
param.put("eValue", evalue);

final Observer observer = new Observer() {
public void update(Observable o, Object arg) {
System.out.println("" + arg);
}
}i

try {
for (int 1 = 0; i < blastTypes.length; i++) {
final String blastType = blastTypes[i];
final Map tmp = new HashMap(param);
tmp.put("blastType", blastType);
Thread t = new Thread(new Runnable() {
public void run() {

try {

Running BLAST using SwingBlast 121

final Blast blast =
BlastManager.createBlast();
blast.addObserver (observer);

RequestIdentifier
requestIdentifier = (RequestIdentifier)
blast.submitQuery(tmp);

final String fileName =

blast.requestResult(requestIdentifier).toString();
final StringBuffer sb =
new
StringBuffer().append(blastType).append(" BLAST for the
sequence starting with ")

.append(sequence.length() > SUB_MAX ? sequence.substring(O0,
SUB_MAX) : sequence).append(" has finished!");
Runnable runnable = new
Runnable() {
public void run() {

JOptionPane.showMessageDialog(SwingBlast2_ 1.this,
sb.toString());
saveBlast(fileName);

}:

SwingUtilities.invokeLater (runnable);
} catch (BlastException be) {
be.printStackTrace();
} catch (Throwable e) {
e.printStackTrace();

}

}
})i
t.start();
}
} catch (Throwable e) {
e.printStackTrace();

}
}
private void saveBlast(String tmpFileName) {
final String fileNameFromUser =
getFileNameFromUser();
if (fileNameFromUser == null)
return;

final File tmpFile = new File(tmpFileName);
final File userFile = new File(fileNameFromUser);
String finalName = tmpFileName;
if (userFile.exists()) {
String errMes = fileNameFromUser +
exists.\nDo you want to overwrite?.";
int choice =

already

122

JOptionPane.showConfirmDialog(this, errMes, "Saving BLAST

Result"”, JOptionPane.YES NO OPTION);
if (choice == JOptionPane.YES_OPTION) {
boolean renamed =
tmpFile.renameTo(userFile);
if (renamed) {
tmpFile.delete();
finalName = fileNameFromUser;

}
} else {
saveBlast (tmpFileName) ;
return;
}
} else {

boolean renamed = tmpFile.renameTo(userFile);

if (renamed) {
tmpFile.delete();
finalName = fileNameFromUser;

}
}
JOptionPane.showMessageDialog(SwingBlast2 1l.this,
"BLAST result saved in " + finalName);

}

private String getFileNameFromUser() {
JFileChooser fc = new JFileChooser();
if (fc.showSaveDialog(this)
JFileChooser .APPROVE_OPTION) {
return fc.getSelectedFile().getAbsolutePath();
} else {
return null;

}
}

protected void finalize() throws Throwable {
super.finalize();

}
private void cleanAllParameters() {
sequenceArea.setText("");
enableFunctions(-1);
}
private String[] getBlastTypes() {
JCheckBox[] allTypes = typeOfSequence == TYPE DNA
|| typeOfSequence == TYPE RNA
? chbDna : typeOfSequence == TYPE PROTEIN ?

chbProtein : null;
if (allTypes == null) return null;

ArrayList types = new ArrayList();
for (int i = 0; i < allTypes.length; i++) {

Running BLAST using SwingBlast 123

JCheckBox cb = allTypes[i];
if (cb.isSelected())
types.add(cb.getText ().toLowerCase());
}
final String[] res = new String[types.size()];
types.toArray(res);
return res;

}

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TYPE DNA || typeOfSequence ==
TYPE_RNA) {
setChb(chbDna, true);
setChb(chbProtein, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);
} else if (typeOfSequence == TYPE PROTEIN) {
setChb (chbProtein, true);
setChb(chbbna, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);
} else {
setChb(chbProtein, false);
setChb(chbDna, false);
setCob(cobDbs, false);
setCob(cobEvalues, false);

}

private static void setChb(JCheckBox[] boxes, boolean
value) {
for (int i = 0; 1 < boxes.length; i++) {
boxes[1].setEnabled(value);
boxes[i].setSelected(false);

}

private static void setCob(JComboBox component, boolean
value) {
component.setEnabled(value);
component.setSelectedIndex(0);

}

public static int getSequenceType(String sequence)
throws RESyntaxException {
RE re = new RE("[actgnACGTN]+");
String[] strings = re.split(segquence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs +=
strings[i].length();
}

124

int length = sequence.length();
int numbQOfACGTNs = length -
numbOfLettersOtherThanATGCNs;

re = new RE("[uU])+");
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOflettersOtherThanUs +=
strings[i}.length();
}
int numbO£fUs = sequence.length() -
numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ THRESHOLD)

return TYPE_ DNA;
} else if ((numbOfACGTNs + numbOfUs) / (double)
length > SEQ THRESHOLD) {
return TYPE RNA;
} else {
return TYPE_PROTEIN;

}
}
public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable() {
public void run() {
final SwingBlast2_1 sequenceForm = new

SwingBlast2_1();
sequenceForm.segFormInit();

}

Retrieving Sequences From GenBank Using BioJava

Frequently, users know GI numbers of sequences that they use regularly
in their research and it is normal for them to submit a GI number of the
corresponding sequence for BLAST searches on the NCBI BLAST
service. We will next implement a feature in SwingBlast whereby users
can retrieve a sequence from GenBank based on its GI number. We will
use existing BioJava routines to retrieve sequences corresponding to a
GenBank ID that users may enter into the sequence field. We will need the
following BioJava libraries to accomplish this task:

Running BLAST using SwingBlast 125

org.biojava.bio.seq.Sequence;
org.biojava.bio.seq.db.GenbankSequenceDB;

org.biojava.bio.seq.io.SeqIOTools;

These libraries can be obtained from the BioJava website (Binary for
J2SE 1.4 or later, as of this writing) at the following URL:

http://biojava.org/wiki/BioJava:Download

Since users have the option of entering sequences directly into the
sequence field, we need to first test if the entered text is a sequence or a
genbank ID. We will do this using regular expressions as outlined below:

text = text.replaceAll("\\s", "");
RE re = null;

try {
re = new RE("[0-9]+");

} catch (RESyntaxException el) {
el.printStackTrace();

}

boolean isGenBankID = re.match(text);
We then create a new instance of the class GenbankSequenceDB that will
retrieve the Genbank record. segoObject contains the entire GenBank

record, that is, the header information, any sequence features and
annotation and the actual nucleotide or amino acid sequence.

segObject = genbankSequenceDB.getSequence(text);

To see the content of the sequence object retrieved we can write it to the
system output using SeqIOTools as followed:

SeqIOTools.writeGenbank (System.out, seqgObject);

To grab only the sequence we then use the method seqString() from
the seqObject.

sequence = seqObject.seqString();
The complete code is as follows:

import org.biojava.bio.seq.Sequence;
import org.biojava.bio.seq.db.GenbankSequenceDB;

126

import org.biojava.bio.seq.io.SeqIOTools;

text = text.replaceAll("\\s", "");
RE re = null;
try {
re = new RE("{0-9]1+");
} catch (RESyntaxException el) {
el.printStackTrace();

}

boolean isGenBankID = re.match(text);

if (isGenBankID) {

GenbankSequenceDB genbankSequenceDB =
GenbankSequenceDB() ;

header = "GI:" + text;

Sequence segObject = null;

try {

new

seqObject = genbankSequenceDB.getSequence(text);
SeqIOTools.writeGenbank(System.out, segObject);

} catch (Exception e) ({
e.printStackTrace();

}

sequence = seqObject.seqString();

The "Format Sequence"” in the application will now have a dual function
when a GI number is pasted in the text area — it will retrieve the sequence
from GenBank and simultaneously convert it into the Fasta format. We

will call this version of the application swingBlast version 2.2.

for SwingBlast Version 2.2 with this feature implemented is
Listing 3.8.

Listing 3.8. SwingBlast Version 2.2

Runnable runnable = new Runnable() {
public void run() {
String seq = null;
final boolean isGenBankID
GenbankDB. isGenBankId(sequenceText);

if (isGenBankID) {
boolean canGetSeq = true;

GenbankSequenceDB genbankSequenceDB
GenbankSequenceDB() ;
header = "GI:" + text;

Sequence seqgObject = null;
try {

The code
shown in

new

Running BLAST using SwingBlast 127

seqObject =
genbankSequenceDB.getSequence(text);
SeqIOTools.writeGenbank(System.out,
seqObject);
} catch (Exception e) {
e.printStackTrace();

}
seq = segObject.seqString();
if (seq == null || seg.length() == 0 ||

tcanGetSeq) {

JOptionPane.showMessageDialog(SwingBlast2_2.this,
"Cannot get the sequence for GenBank ID
" + sequenceText);
return;
}
}

SwingBlast2_ 2.this.sequence = seq;
Runnable runnableAwt = new Runnable() {
public void run() {
String seqFin = SwingBlast2_2.this.sequence;
String header = null;
String sequence = "";

if (isGenBankID) {
int i = seqgFin.indexOf("\n");
header = seqgFin.substring(0, 1i);
sequence = seqgFin.substring(i +
"\n".length(), segFin.length());
} else {
sequence = sequenceText.toLowerCase();
header = SEQ HEADER_GEN;

}

// We first check that there is something.

updateSequenceArea(header, sequence,
fastaFormatted, isGenBankID);

}
}i
SwingUtilities.invokeLater (runnableAwt);
i

new Thread(runnable).start();

Fig. 3.15 and Fig. 3.16 below show the results of pasting a GenBank Id in
the sequence area of SwingBlast Version 2.2.

128

¢ SwingBlast Version 2.2 E[=1E3

SwingBlast Help
5995995
Sequence
Format Sequence
Program [lBlastiN [Blastx [TBlastX ClBlastP] TBiastN
Datahase Eru - i
E-value i:},nm |
Clear Submit

Fig. 3.15. Pasting GI number in the text area for sequence retrieval

= SwingBlast Version 2.2 E|@|g|

SwingBlast Help

>gl| 6995995 | ref |NM_000452.2| Homo sapiens cystic fibrosis t%
ransnenbrane conductance regulator, ATP-binding cassette (s
ub-family C, member 7) (CFTR), mRNA
AATTGGALGCAAATCACATCACAGCAGGTCAGAGALAALGGLTTGAGCGE
(CAGGCACCCAGAGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACG
Sequence GCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTG
GAARAGGCCAGCGTTGTCTCCARACTTTTTTTCAGCTGGACCAGACCAAT
TTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAR
TCCCTTCTETTGATTCTECTGACAATCTATC TCAALLATTGCAALGAGAR
TGGGATAGAGAGCTGGCTTCAAAGARALATCCTARACTCATTAATGCCCT
TCGGCGATGTTTTTTCTGEAGATTTATGTTC TATGGAATCTTTTTATATT
TACCACAACTCACCALACCACTACACCCTCTCTTACTOCCAAGAATC AT

Format Sequence

Program [/BlastN [|BlastX [TBRastX | |00 i
Database |nr >
Evalue 0.001 ¥

Fig. 3.16. Retrieving a sequence from GenBank from its GI number

Running BLAST using SwingBlast 129

Although the Fasta header in Fig. 3.16 appears to run over multiple lines,
it is actually a single line that has wrapped over because of the size of the
text area.

Retrieving GenBank Without BioJava

This is how one would implement the retrieval of the sequence using
GenBank ID and NCBI web application using regular expressions to parse
out the sequence. To implement the retrieval of sequences from GenBank
by GI numbers we create a package called org. jfb.util.GenbankDB.

The GenbankDB class implements a method called getSequence() to
retrieve sequences from GenBank through requests sent to the following
URL (as defined in the String constant GENBANK_URL):

"http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?dopt=fastas
list_uids=";

Since the GenBank Id is a number is a numeral, the method performs
checks if the user entered GI number is a valid entry. The getSequence ()
method takes a single parameter — the GenBank ID — opens a connection to
the URL, obtains the data from GenBank, and performs the necessary
parsing, formatting and trimming to get the actual GenBank sequence. To
retrieve the CFTR sequence from GenBank using its GI number (6995995,
replaced by 90421312), for example, the URL we would use in a browser
would be: <<<here

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?dopt=fastasl
ist _uids=6995995

This opens up the GenBank page with the sequence displayed in Fasta
format (Fig. 3.17). This record needs to be parsed to extract the raw
sequence from the HTML formatting on the page. This is easily done since
the sequence is bounded by the <pre> and </pre> starting and ending tags.
Fig. 3.18 shows the source HTML of the page with beginning <pre> tag
just before the Fasta formatted sequence starts.

130

B B Yew G foonals Iwk teb

- - 51 o R [%2 ittt i i pviertresviwen Fooftoptatstahist_uedeeti S5t ¥ 0 e [GL

*g1i 6995995 | cal |NK_D00452.2] Homo sapliens cyatic fibrosis ATP-binding {sub-Lami
AATTOGAAGC AAATGACATCACAGC AGG TCAGASALLAAGGOTTGAGCGOCAGGC ACCCAGAGTAGTAGS
TETTTGGCATTAGGAG TTGAGCCCAGACGHCCC TAGCAGGGACCCCAGGOCCOAGREACCATOC AGAT
GTCOCCTC TOGARAAGGCC AGCOTTOTC TOCARAC TTTTTTTCAGC TOOACCAGACCAATTTTOAGC AR
GOATACAGAC AGCOCCTOEARTTOTCAGACATATACCARATCCLTTC TOTTOATTC TGO TGACAATC TAT
CTCAMMAATTEGALAGACAATOGGATAGAGAGE TOOC TTCALAGAAAMATCC TARACTCATTAATSCCCT
TG AT T TTT T TC T ACATTTATCTTC TATCOAATC TTTTTATATTTACCSCAACTCACCARAGT A
OTACAGCCTCTCTTAC TOGGAAGAATCATAGCTTCC TATOACCOGCAT AL AAGIAGGAACGLTCTATED
CEATTTATCTAGOCATAGSC TTATOCCTTCTCTTTAT ACTGCTCOTACACCCAGCCATTTT
TOGCCTTCATEAC AT TGO ANTGT AGATOAGAATAGE TATO TITAS TTTGAT I TATAAGALGACTTTARAG
CTGTCAMGCCG TG TTC TAGATALAATAAGTATTGGAC AAC TTGTTAGTE TCC TTTCCARCALCCTGARCA
AATTTEATGAAGCAC TTOCATTGGC ACATTTC O TOTOOATCOC TCCTTTOC ARG TOGCAC TOCTCATSG0
GCTRATCTGSGAGTTCTTAC A T T To TG AL T TGO TTTCC TOATAGTCCTTGCCCTTTTT
CAGGLTOGGE! AGAATGATEATEALGTACAGAGA TECCAMGATCAGTCAMAGACTTG
TEATTACCTCACAMATCATTCARAATATCC AATCTOTTAAGCCATAC TOCTOOCARGAAGC RATCOARAL
AATGATTOARAACTTARGAC ARAC AGLACTOAARCTOAC TOGGAAGGCAGCC TATOTGAGATACTTCAAT

ABCTCAGCCTTC T TTC T AGGGTTC TT TG TG TG TT TTTATC TG TGC TTOCC TATGCACTARTCARAG
GAATCATCC TOCGGAAAATATTC ACC ACCATE TCATTC TOCATTG TTE TOC G0 ATGGCEGTC ACTOGGCA
ATTTCCE TOGGCTOTACARAC ATGG TATCGACTC TCTTGGAGC AATALAC AAAATACAGGATTTCTTACAL

AAGCARGAATATAACACATTOCAATATALCTTARCCAC TACACAACTACTCATOCACAATCTAACAGCCT

TCTOHIAGGAGGGATTTOGIGAATTATTTGACAARGC AAAAC AAAAC AATAACAATAGALLALCTTCTAL

TEGTOAT AL A CTCTTCTTCAGTAATT T TCACTTC TTGOTACTOCTOTCCTOARAGATATTAATTTC

ALGATAGAALOAGG A AT TTOTTOOCCOTTRC TOGATCCACTOOAGC LECC AMGACTTEACTTCTAATOA -
L ¥

[5s Doe

Fig. 3.17. GenBank record for the CFTR mRNA sequence

J Source of: hitp:/Avww.nc

Eils Edit Yiew
]. —r A =
=2

</script>

<a class="dblinks" href="javascript:PopUplenuZ Set (Henuss85595) ;" onMousebut="FopUpM
</tr>

</table>

</form><pre>>gi| 6995995| ref |NM_000492.2| Homo sapiens cystic fibrosis transmembrane
AATTGGAAGC AAATGACATC ACAGCAGGTCAGAGRAAAAAGGGTTGAGCGGCAGGCACCCAGAGTAGTAGS
TCTTTGGCATTAGGAGC TTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAS

GTCGCCTC TGGARAAGGCCAGCGTTGTC TCCARACTTTTTTTCAGC TGGACCAGACCAATTTTGAGGAAR
GGATACAGACAGCGCCTGGAATTGTCAGACATATACCRAAATCCCTICTGTTGATTCTGCTGACAATCTAT
CTGAAMAATTGGARAGAGAATGGGATAGAGAGCTGGCTTCARAGAAAAATCCTAAACTCATTAATGCCCT

TCGGCGATGTTI T I T TGGAGAT TTATGT TC TATGGAATCTTTTTATATTTAGGGGAAGTCACCARAGCA
GTACAGCCTCTCTTACTOGGAAGAATCATAGC TTCCTATGACCCGGATAACRAAGGAGGARCGCTCTATCS
COATTTATCTAGGCATAGGCTTRATGCCTICTCTTTATTIGTGAGGACACTGCTCCTACACCCAGCCATTTT
TGGCCTTCATCACATTGGAATGC AGATGAGAATAGCTATGTTTAGTTTGATTTATAAGAAGACTTTARRG

TG T AAGCCGTGTTC TAGATAARAT ARG TATTGGACAACTTGTTAGTCTCCTTTCCAACRACCTGALCA
AATTTGATGAAGGACTTGCATTGGCACATTITCOTGTGGATCGCTCCTTTGC AAGTGGCACTCCTCATGGG
GCTARTCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTT
CAGGCTGGGCTAGGGAGAATGATGATGAAGTACAGAGATC AGAGAGCTGGGAAGATCAGTGAAAGACTTG
TEATTACC T AGAAATGAT TCAAAATATCCAATC TG TTAAGGCATACTGC TGGGAAGAAGC AATGGALLL
AATGATTGAAAACTTAAGACARACAGAACTGARACTGACTCGGAAGGCAGCCTATGTGAGATACTTCAAT
AGCTCAGCCTTCTICTTCTCAGGGTTCTITGTGGTGT T TTTATCTGTGCTTCCCTATGCACTAATCRAALG
GRATCATCCTCCGGAARATATTCACCACCATCTCATTCTGCATTGTTCTGCGCATGGCGGTCACTCGGCA

AT T T T GGG TG TAC A A A TG TATGAC TCTCTTGGAGCAATAAACAARATACAGGATTTCTTACAL

AAGC A AGAATATAAGAC AT TOGAATATAACTTAACGACTACAGAAGTAGTGATGGAGAATGTAACAGCCT
TCTGGGAGGAGGGATTTGGGGARTTATTTGAGARAGCAARACRAARCARATARCAATAGAARRACTTCTAL
TGGTGATGACAGCCTCTTCTTCAGTAATTTCTCACTTCTTGGTACTCCTGTCCTGARAGATATTARTTTC
AAGATAGAARGAGGACAGTTGTTGGCGGTTGC TOGATCCACTOGAGCAGGCALGACTTCACTTCTAATGA
TGATTATGGGAGAAC TGGAGCCTTCAGAGGGTARRATTAAGC ACAGTGGAAGAATTTCATTCTGTTCTCA

GTTT TN TRGATTA TGO C TRROACC AT TR AGR AR ATATCATCTTTROTATTTOOTATGATGAATATAGE e
£ (]

Fig. 3.18. Parsing the raw sequence data from a GenBank record

Running BLAST using SwingBlast 131

The code for the GenbankDB class is described in Listing 3.9.

Listing 3.9. The GenbankDB class

package org.jfb.util;

import org.apache.regexp.RE;

import org.apache.regexp.RESyntaxException;
import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.URL;

public class GenbankDB ({
private static final String GENBANK_URL =
"http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?dopt=fastasli
st_uids=";

public static String getSequence(String gbId) throws
IOException, IllegalArgumentException {
// A GenBank ID is always a number
boolean isGenBankID = isGenBankId(gbId);
String genBankId = gbId.replaceAll("\n", "");

if (!isGenBankID)
throw new IllegalArgumentException(genBankId +
is not a valid GenBank ID");

BufferedReader reader = null;
StringBuffer sb;

try {
URL url = new URL(GENBANK_URL + genBankId);
reader = new BufferedReader (new
InputStreamReader(url.openConnection().getInputStream()));
String s;
sb = new StringBuffer();
while ((s = reader.readLine()) != null) {

sb.append(s + "\n");

}
} finally {
if (reader != null)
reader.close();

}

String tmp = sb.toString().toLowerCase();
int idx = tmp.indexOf("<pre>");
int endIdx = tmp.indexOf("</pre>");

if (idx == -1 || endIdx == -1)
return null;

132

return sb.substring(idx + "<pre>".length(),
endIdx);
}

private static final int CUT_OFF = 30;

public static boolean isGenBankId(String gbId) {
RE re = null;
try {
re = new RE("([0-9]1)+");
} catch (RESyntaxException el) {

}

boolean valid = true;

String cleanSeq = gbId.replaceAll("\n", "");
int len = cleanSeq.length();

final int min = Math.min(CUT_OFF, len);
String seqPiece = cleanSeq.substring(0, min);

re.match(segPiece);
String match = re.getParen(0);

valid = match {= null &&
match.equals (seqPiece);
return valid && min == len;
}
}
Input Validation

Note that there is no input validation in SwingBlast 2.2. SwingBlast
2.2 does not flag an error when bad characters are present in the sequence
entered in the text area. Fig. 3.19 shows the application behavior when an
amino acid ("D") is inserted in what is apparently a nucleotide sequence.
The sequence type is deduced as "N/A" because the application cannot
determine the sequence type (Listing 3.7). For the same reason, none of the
BLAST options are available. With the appropriate input validation, the
application can catch errors in the entered sequence type and warn the user
to make the appropriate changes.

Running BLAST using SwingBlast 133

= SwingBlast Version 2.2
SwingBlast Help

aequencel [IN/AI LS N/A
ATGCATGCATGCD

Sequence

Format Sequence

J Clear " Submit

Fig. 3.19. Handling bad characters in input sequence

We will incorporate input validation for a few simple situations as
described below:

1. The sequence contains bad characters, that is, characters other than
the single letter codes for nucleotides and amino acids. We had
illustrated how we used information on the composition of
sequences found in nature to determine sequence type in Chapter 2.
According to this algorithm, if:

a. Total number of A, T, G and C's divided by the total length
of the sequence is greater that 0.85, it is a DNA sequence

b. Total number of A, T, G, C and U's divided by the total
length of the sequence is greater that 0.85, it is an RNA
sequence

If neither of these two conditions are met, the sequence is assumed to be
a protein sequence. Again, we are not using the extended DNA/RNA
alphabet that includes symbols for sequence ambiguity as defined in the

134

IUPAC-IUB nucleotide and amino acid nomenclature. Instead, we are
illustrating input validation for the simplest of cases where the DNA
alphabet is assumed to be composed of A, T, G, C and N and RNA is
assumed to be A, U, G, C, N (where N = any nucleotide base) and amino
acid alphabet is assumed tobe A, C, D, E,F, G, H,LK,L,M, N, P, Q,R,
S,T,V,Wand Y.

Once we have determined the sequence to be DNA, RNA or protein, we
check if any bad characters are present-in the sequence and warn the user
accordingly. We also check if a number instead of a sequence has been
entered in the text area. This may very well be a GI number. If it is indeed
a GI number, the application will download the corresponding sequence
from GenBank when the user presses the "Format Sequence" button. If
none of the above conditions are met, the application will print an error
message asking the user to check the validity of the sequence or data
entered. To add input validation to the SwingBlast application, we add a
method called isvalidSequence(). The method takes the input sequence
as the parameter and performs the appropriate checks as described earlier
using regular expressions:

private static boolean isValidSequence(String seq) {

int idx = seq.indexOf(">");

int idxEndOfFastaHeader = seq.indexOf("\n");

String sequenceToCheck = null;

if (idx t= -1) {
sequenceToCheck = seq.substring(idxEndOfFastaHeader +

1, seq.length());

} else {

sequenceToCheck

il

seq;
}
return matchRegex(REGEX_DNA, sequenceToCheck)

| | matchRegex(REGEX_RNA, sequenceToCheck)

| | matchRegex(REGEX PROTEIN, sequenceToCheck)

| | matchRegex(REGEX_GENBANK_ID, sequenceToCheck);

The regular expression matching within matchRegex () method checks
for the following valid patterns:

private static final String REGEX_DNA "[acgtnACTGN]+";

private static final String REGEX_RNA = "[acgunACUGN]+";

private static final String REGEX_PROTEIN =
"[acdefghiklmnpgrstvwyACDEFGHIKLMNPQRSTVWY J+";

private static final String REGEX_GENBANK_ID = "[0-9]+";

The matchRegex () method itself is as follows:

Running BLAST using SwingBlast 135

private static boolean matchRegex(String regex, String
sequence) {

RE re = null;

try {
re = new RE(regex);

} catch (RESyntaxException res) {
// The regex has been tested so no need to chech the
// exception here

}

String cleanSeq = sequence.replaceAll("\n", "");
boolean valid = true;
int len = cleanSeq.length();
int pvsIdx = 0, nextIdx;
for (int i = 0; i < len; i += CUT_OFF) {
nextIdx = Math.min(i + CUT_OFF, len);
String seqgPiece = cleanSeq.substring(pvsIdx,
nextIdx);
re.match(seqgPiece);
String match = re.getParen(0);
valid = match != null && match.equals(segPiece);

if (!valid)
break;
pvsIdx = nextlIdx;

}

return valid;

}

Next we call the isvalidsequence() method in the
actionPerformed() event method:

public void actionPerformed(ActionEvent e) {
// Check sequence type
// Retrieve text entered in the text area
final String sequenceText = sequencelArea.getText();
if (sequenceText == null || sequenceText.length()

cleanAllParameters();
return;

}

if (!isvValidSequence(sequenceText)) {
JOptionPane.showMessageDialog(SwingBlast2_2.this,
"The sequence you've entered is neither a DNA
or protein sequence nor a FASTA formatted sequence.\n" +
"Please provide a valid sequence.");
return;

}

136

The application is now able to detect errors in the entered sequence and
warn the user with the appropriate message (Fig. 3.20).

- SwingBlast Version 2.2
SwingBlast Help

ATGCATGCATGCD

We found that the sequence is type DNA ﬁmmnmmmammum Protein

Please correct the s

Format Sequence

Pragram otasin Dl Biastt (O TErastt [Blastp [TEnasty
Database -
E-value |ﬂ.lJﬂl -

| Cloar | submt |

Fig. 3.20. SwingBlast 2.2 with input validation

Fig. 3.21 shows that the application recognizes that just a Fasta header
has been provided and results in an error.

- SwingBlast Varsion 2.3,
SwingBlast Blast Help

6995995

The sequence you've entered is neither a DNA or _plﬂtlnmmm nor a FASTA formatted sequence,

Please provide a valid sequence.
Format Sequence |
Program CiBlsstn Clmest C11otstX (O glastP T 1Besth
Database -

Evalue 0000

_ Clear | Submit_|

Status: Ready

Fig. 3.21. Input validation for wrong GI number format

Running BLAST using SwingBlast 137

The application, however, does retricve the correct sequence
information from GenBank if a GI number is provided.

Controlling Program Events and Responses

We will next incorporate some program flow features in swingBlast
2.2. We will program the "Format Sequence" button to be enabled only
when a non-Fasta formatted sequence is entered in the text area. The
format button will be disabled when the application starts and also under
the following conditions:

1. When no sequence is available in the text area

2. If the sequence is already in Fasta format (at the time of
pasting or right after the sequence is Fasta formatted)

3. When the "clear" button is pressed
4. When the "Format Sequence" button is pressed

Let's enhance our application with these features in mind. We will call
this swingBlast Version 2.3. The code to enable or disable the "Format
Sequence" button to meet condition #1 stated above is straight forward as
shown in the Listing 3.10 below. We implement a document listener
interface and associate it with the text area widget. Within the document
listener, we implement the insertUpdate() and removeUpdate()
methods to respond to events that either insert or modify text within the
text area. Fig. 3.22 shows the swingBlast 2.3 application with the format
button disabled at launch.

Listing 3.10. Enabling and disabling the Format button

private void addListeners() {
docListener = new DocumentListener() {
public void insertUpdate(DocumentEvent e) {

String text = sequenceArea.getText();

if (text == null || text.length() == 0) {
enableFunctions(-1);
formatBtn.setEnabled(false);

} else
formatBtn.setEnabled(true);

138

public void removeUpdate(DocumentEvent e) {
String text = sequenceArea.getText();
if (text == null || text.length() == 0) {
enableFunctions(-1);
formatBtn.setEnabled(false);

}
}

public void changedUpdate(DocumentEvent e) {
}

}s

sequenceArea.getDocument () .addDocumentListener (docListener);

Similarly, to meet condition 2, we include the following code:

final boolean fastaFormatted =
_1;

formatBtn.setEnabled(!fastaFormatted);

sequenceText.indexOf (">") !=

For condition 3, the code is as follows:

clearBtn.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
cleanAllParameters();

}
})i
The cleanAllParameters() method will empty the sequenceArea and by

doing this the document listener shown ealier will disable the
formatButton as shown below:

private void cleanAllParameters() {
sequenceArea.setText("");
enableFunctions(-1);

Finally, to meet condition 4, when the button is pressed, the action
listener is actually disabling the format button:

formatBtn.addActionListener(new ActionlListener() {
public void actionPerformed(ActionEvent e) {

formatBtn.setEnabled(false);

Running BLAST using SwingBlast 139

)i

= SwingBlast Version 2.3
SwingBlast Blast Help

Sequence

Program BiastN IBlastX BlastP TBlastN
Database

E-value 0.001 =

[Clear H Submit

Status: Ready

Fig. 3.22. Format button is disabled at start-up

Reporting BLAST Status

SwingBlast allows users to send sequences for multiple simultaneously
BLAST analyses. It would be very informative to the user if the
application were to provide a status of the current job that it is performing.
In the next version of the application, we will add a program status bar to
do so. With the program status code in place, the application will provide
the user a running status of the jobs in process. Note that these messages
will be relayed directly from the QBlast service and printed on the status
bar using the observable method discussed earlier. The swingBlast 2.3
application starts with the "Status: Ready" message at the bottom left of
the application window as shown in Fig. 3.23. Fig. 3.24 shows the status

140

while the application is retrieving a sequence from GenBank based on a GI
number. Fig. 3.25 and Fig. 3.26 show the status immediately after
submitting a BLAST search and an intermediate stage before getting the
results back. After all searches are complete, the system returns to the
"Ready"” status.

= SwingBlast Version 2.3

SwingBlast Blast Result Help
Sequence
Format Sequence

Program _|BlastN [IBlastX [[1TBlastX [BlastP [] TBlastN
Database v - |
E-value 0.001 *

| Clear | Submit
Status: Ready

Fig. 3.23. Printing BLAST search status at start-up

Running BLAST using SwingBlast 141

5995995
Sequence
Program [(OBlastd [Blast] TBiastX [J BlastP [TBlastN
Database ball |
E-value 0.001 v
| Clear | submn_|
Status: Retrieving sequence for GenBank ID 6995995

Fig. 3.24. SwingBlast status during sequence retrieval from GenBank

= SwingBlast Version 2.4

-
AAGAGAGAATGAGAGACACACTGAAGAAGCACCAATCATGAATTAGTTTT [~
ATATGCTTCTGTTTTATAATTTTCTGARGCARAATTTTTTCTCTAGEAAA
TATTTATTTTAATAATGTTTCARACATATATTACAATGCTGTATTTTARA
A GAATGATTATGAATTACATTTCTATAAAATAATTTTTATATTTGALATA
TTGACTTTTTATGGCACTAGTATTTTTATGAAATATTATGTTARRACTGG
Sequence |cucinni66AGAACCTAGGGTCATATTAACCAGGGGCCATOAATCACCTTT
TEETCTGEAGGGAAGCCTTGEGECTCATCGAGTTGTTGCCCACAGCTGTA
TGATTCCCAGCCAGACACAGCCTCTTAGATGCAGTTCTCAAGARGATGET
ACCACCAGTCTGACTGTTTCCATCAAGGGTACACTGCCTTCTCAACTCCA
A CTGACTCTTAAGAAGACTGCATTATATTTATTACTGTAAGRAAATATC
WCTTGTCAATAAAATCCATACATTTGTGT E

Format Sequence .
Program (v BlastN [| BlastX [|TBlastX o0 | o
Database | nr -
E-value 0.001 ¥
clear | sumn|

Status: Submitting the job to the server with queryCMD=Put8.QUERY_BELIEVE_DEFLINE...

Fig. 3.25. BLAST search status at the time of submission

142

= SwingBlast Version 2.4

SwingBlast Blast Result Help

SequUence ;uraGGGGAGAACCTAGGGTGATATTAACCAGGGGCCATGAATCACCTTT

AACTGACTCTTAAGAAGACTGCATTATATTTATTACTGTAAGARAATATE 7z
ACTTGTCAATAAAATCCATACATTTGTGT v
Format Sequence
Program [viBlastN [|BlastX [|TBlastX | 1.0
Databhase |m' w»
Evaue |0.001 ¥
| Clear | Submit

Status: Time left 9s before requesting the result

BTG AT I T T ICAGG L TAGETCTATGTACT ICATGUTGICTALALT
BAGAGAGAATGAGAGACACACTGAAGALGCACCAATCATGAATTAGTTTT
ATATGCTTCTGTTTTATAATTTTCTGAAGCARAATTTTITTCTCTAGGALA
AT TTAT T T TAATAATGT TTCARACATATATTACAATGCTGTATTTTAAR
A GAATCATTATGAATTACATTTGTATAAAATAATTTTTATATTTGAAATA
TTGACTTTT TATGGCACTAGTATTTTTATGARATATTATGTTAALACTGG

I

TGETCTGGAGGGAAGCCTTGGGGCTGATCGAGTTGTTGCCCACAGCTGTA
TGATTCCCAGCCAGACACAGCCTCTTAGATGCAGTTCTCAAGAAGATGGT
ICCACCAGTCTGACTGTTTCCATCAAGGGTACACTGCCTTCTCAACTCCA

Fig. 3.26. Printing BLAST search status before getting results

The code for adding BLAST search status is as follows. First, we add a
status label at the bottom left side of the application:

statusLabel = new JLabel (STATUS_LABEL);
statusLabel.setPreferredSize(new Dimension(50, 30));
statusText = new JLabel (STATUS_READY);

JPanel statusPanel = new JPanel();

statusPanel.setBorder(BorderFactory.createEmptyBorder (0, 5,

5,

5));:

statusPanel.setLayout(new BorderLayout());
statusPanel.add(statusLabel, BorderLayout.WEST);
statusPanel.add(statusText, BorderLayout.CENTER);

newContentPane.add(statusPanel, BorderLayout.SOUTH);

If a GI number has been entered in the sequence area, the application

gets the corresponding sequence from GenBank and displays the

Running BLAST using SwingBlast 143

appropriate status message as shown in Fig. 3.24. The code for
implementing this is shown below:

if (isGenBankID) {
boolean canGetSeq = true;

final String statusText = "Retrieving sequence for
GenBank ID " + sequenceText;
try {

SwingUtilities.invokeAndWait(new Runnable() {
public void run() {

SwingBlast2_3.this.statusText.setText(statusText);

}
})i
segObject = genbankSequenceDB.getSequence(text);
} catch (Exception e) {
e.printStackTrace();
}
sequence = seqObject.seqString();
SwingUtilities.invokeAndWait (new Runnable() {
public void run() {
resetStatusText();
}

})i
} catch (IllegalArgumentException iae) {

// ignore because we checked already!
} catch (Exception e) {
canGetSeq = false;

}
if (seq == null || seq.length() == || !canGetSeq) {
JOptionPane.showMessageDialog(SwingBlast2_3.this,
"Cannot get the sequence for GenBank ID " +
sequenceText);
return;
}

Displaying BLAST Results Interactively

Finally, we will enhance the display capabilities of swingBlast so we
can view the results of the BLAST in a graphical and interactive manner.
We will call this swingBlast Version 2.4. The application will appear as
shown in Fig. 3.27.

144

= SwingBlast Version 2.4
SwingBlast | Blast Result | Help

Open...

Sequence

Program
Database ni

E-value

[_ Clear | Submit

Status: Ready

Fig. 3.27. Displaying BLAST results interactively

As seen in the Fig. 3.27, the user will select the Blast = Open menu
button to access saved BLAST results. This will open a new window that
will display the results in an interactive format. The data displayed in the
graphical view is obtained by parsing information from the XML output
shown in Fig. 3.28. The data parsed from the XML file includes such fields
as the Hit_id, Hit_definition, Hit_accession, Hit_len, Hit_hsps,
Hsp_number, Hsp_bit-score, Hsp_score, Hsp_evalue, etc. These fields
describe the various attributes of a High Scoring Sequence Pair (HSP),
such as the id, the definition, the GenBank accession number, the length,
score, E-value etc. An HSP is a pair of aligned sequences of arbitrary but
equal length, one derived from the query (input) sequence and one derived
from the database it was searched against, that was returned by the BLAST
search. The HSPs represent sequences whose alignment is locally
maximal and for which the alignment score meets or exceeds a threshold
or cutoff score provide by the user.

Running BLAST using SwingBlast 145

B blastn,tx! - Notepad

Fe Edt Format Yew Hep
<7xm] version="1,0"7><!DOCTYPE BlasTOUTPUT PUBLIC “-//NCBI//NCBI BlastoOuTput/EN"
"NCBI_Blastoutput. dud”><Blastoutput> <Blastoutput ogram>blastn</Blastoutput_program:
<Blastoutput_version>blastn 2.2,10 [0ct-19-2004]</B]astoutput_version:
<Blastoutput_references~keference: Altschul, Stephen F., Thomas L. Madden, Alejandro A,
schaffer, ~Jinghui Zhang, Zheng Zhang, webb Miller, and pavid 3. Lipman (1997)
~&0uot;Gapped BLAST and PSI-BLAST: a new generation of protein database
saarch-programséquot; Nucleic Acids res. 25:3389-3402.</Blastoutput_references
<Blastout ut_ﬂh>nrx/aﬁastoutpur_db> <BlastouTput_query-
0111 229?</a1astoutgut_query—lb> <Blastoutput_query-def=hp</Blastoutput_guery-defs
<Blastoutput_guery-len>420</81astoutput_guery-1en> <Blastoutput_params: <Parameters:>
<Parameters_expect>0, 001« /Parameters_gxpect> <Parameters_sc-
match-1</Parameters_sc-match: <Parameters_sc-mismatche-3</Parameters_sc-mismatchs>
<Parameters_gap-opensS</Parameters_gap-opens <Parameters_gap-
extends2</Paramneters_gap-extends> </Parameters> </BlasToOuTpuUT_params>
<Blastoutput_1iterations> <Iteration:> <Iteration_iter-num>l</Iteration_iter-num:>
<Iteration_hits> <HIT> <Hit_num>1</HiT_nums:
<Hit_1d>gl | 6095595 |ref|NM_000492. 2| </HiT_1d> <HitT_def>Homo sagiens cystic
fibrosis transmembrane conductance regulator, ATP-binding cassette (sub-family C, member
7 (CFTR), mANA</HiT_defs <Hit_accession>nM_000492</Hit_accession>
<HIT_len>6129</Hit_len> <HiT_hsps> <HSp>
<Hsp_num=1</Hsp_num: <Hsp_bit-score>B833. 0B2</Hsp_bit-score>
<Hsp_scorex>420</Hsp_score> <Hsp_evalue>0</Hsp_evalue>

<Hsp_querﬁ-fruﬂ>1</Hsp_query-from> <Hsp_query-to>420</Hsp_query-to>
<Hsp_hit-from:=1</Msp_hit-Trom: <Hsp_hit-Tox420</Hsp_hit-To>
<Hsp_guery-frame>1l</Hsp_guery-frame> I <Hsp_hit-frame>1</Hsp_hit-frame>

<Hsp_identity>420</Hsp_identity> <Hsp_positive>420</Hsp_positives
<Hsp_align-len=420</Hsp_align-len>

<HSP_05 eq=AAT TGEAAGC ARATGACATCACAGCAGGTCAGAGAAAAAGEGT TGAGCGECAGGCACCCAGAGT AGT AGGTCTTTGGCA

TTAGGAGCT TGAGCCCAGACGGECCCT AGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTGEAAMMGECCAGCETTGTC

TCCARACT TTTTTTCAGCTGEACCAGACCAAT TT TGAGGAAAGGAT ACAGAC AGCGCCTGGAAT TGTCAGACAT ATACCARATCCCTTC

TGTTGATTCTGCTGACARTCTATCTGAAAAAT TGGARAGAGAAT GEEAT AGAGAGC TGEC T TCAAAGAAAMAT CCTARACTCAT TAATG

COCTTOGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGARTCTTTT TAT AT T T AGGGEAMTCACCARAGCAZ /HSp_gs >

<Hsp_hseq>AATTGGAAGC AAATGACATCAC AGC AGGTCAGAGAAAAMSGGTTGAGCGECAGGCACCCAGAGTAGTAGETCTTTGGCA
TTAGGAGCT TGAGCCCAGACGGCCCT AGC AGGGACCCCAGCGCCCOAGAGACCATGCAGAGGT CGCCTCTGRAMMAGGCCAGCGTTGTC
TCCARACTTTTTT TCAGCTGGACCAGACCAAT TT TGAGGASAGGAT ACAGAC AGCECCTEGAATTGTCAGACAT ATACCAMATCCCTTC o

Fig. 3.28. XML file containing BLAST results data

BLAST results displayed in an interactive format are shown in Fig. 3.29.

£ BLAST Result for file C:\blast\blastnew?. txt X

Blast Result

Input Sequence Neme: gil6995995 ref|WM 000492.2|
Swavary of hits (Scroll down to view alignments)

1. gi|p295995 length: 6129

2. gillB0331 length: 6129

3. gil55629259 length: 6192
4. gi147933787 length: 7528
5. gil|3047170 length: 4446

6. gi|46452254 length: 4449
7. gilg007842 length: 4546

8. gi]54873161 length: 4452
9. gil|55742781 length: 4452
10. gi|1100924 length: 4353
11. gill669376 length: 82512
12. gil|57116613 length: 38971
13. gi|57116333 length: 39128
14, gi|57116329 length: 36066
15. 941131343032 length: 6019

Fig. 3.29. Displaying BLAST results in an interactive format

Clicking on the GI number opens the GenBank record (Fig. 3.30).

146

) NEBI Sequence Viewer v2.0 - Mozilla Firefox El@@
Ble Edt Wew Go [ockmorks Tooks el e
1 = g}, \.5;_ 5 hittp: e, ncbi. it i, govjentrez) fepitdopt=fastats ¥ | @3 Go [(CL

PubMad Hu

Search | Nucleatide

Limits

[Cispley | | FASTA v | [Send || alltofie =

Ranga; from begn ta end [Reyarse camplemeanted strand
C1: MM 000492 Reports Home sapeens eyt [gr6995935) Links

*{1| 6995995 ref |NM _DO049Z.2| Homo sSaplems cysStlc CL1brosis Lransmembrans conductance regq
AATTGGAAGC AAATGACATCAC AGCAGGTC AGAGARAAAGGGTTGAGCGGCAGGCACCCAGAGTAGTAGG
TCTTTGGCATTAGGAGC TTGAGCCCAGACGGCCCTAGT AGGGACCCCAGCGLCCGAGAGACCATGCAGAG
GTCOCCTCTEOAAMGGCCAGCGTTOTCTCCAAACTTTTTTTCAGC TOGACC AGACCARTTTTGAGGAAL
GGATACAGACAGCGCCTGGAATTGTCAGACATATACCARATCCCTTCTGTTGATTCTGC TGACAATCTAT
CTGARAAATTGGAAAGAGAATGGTEATAGAGAGT TGGCTTCARAGARRAATCCTAAACTCRATTAATGCCCT
TCGGCGATGTTTT T TC TGCAGAT TTATGTTCTATGGARTCTTT T TATATTTAGGGGARGTCACCARAGCA
GTACAGCCTCTCTTACTGGGAAGARTCATAGCTTCCTATGACCCOGATAAC AAGEAGGAACGCTCTATCG
AT TTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCATTTT
TGGCCTTCATCACATTGGAATGC AGATGAGRATAGCTATGTTTAGTTTGATTTATAAGARGACTTTARAG
AT A A T AT L G LT b T L R R T T R o b L& e R
< >

[| Done
Fig. 3.30. Accessing GenBank record from BLAST results

Let’s add the code that displays the BLAST results interactively. First,
we add a menu item "BLAST Result" in the menu bar:

JMenu blastMenu = new JMenu("Blast Result”);
openItem = new JMenultem("Open..."});
blastMenu.add(openlItem);
menu.add(blastMenu);

Next we create a method called displayBlastResult () that takes a file
name containing the BLAST results (that we saved earlier) as a parameter.
The code is shown below:

private void displayBlastResult(final String
blastFileName) {

final JDbialog blastDialog = new JDialog(this, "BLAST
Result for file " + blastFileName, false);

final JTextArea textArea = new JTextArea();

final Font sf = textArea.getFont();

Font £ = new Font ("Monospaced”, sf.getStyle(),
sf.getSize());

textArea.setFont(f);

Runnable runnable = new Runnable() {
public void run() {

Running BLAST using SwingBlast 147

Collection blastHits =
extractBlastHits (blastFileName);

final String text = createReport(blastHits, new
ColorFormatterDNA());

SwingUtilities.invokeLater (new Runnable() {
public void run() {
textArea.setText(text);
}
Y
}
Yi
new Thread(runnable).start();
textArea.setLineWrap(true);
final JMenuBar menuBar = new JMenuBar();
JMenu menu = new JMenu("Blast Result");
blastDialog.setJMenuBar(menuBar);

JMenultem openItem = new JMenultem("Open...");
openItem.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {

final String blastResult = getBlastFileFromUser();
if (blastResult != null)
displayBlastResult(blastResult);
}
)i
menu.add(openltem);

JMenultem menultem = new JMenultem("Close");
menultem.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {

closeMenu(blastDialog);
}
i
menu.add (menultem);
menuBar.add(menu);
blastDialog.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
closeMenu(blastDialog);
}

})i
blastDialog.getContentPane() .add(new

JScrollPane(textArea));
blastDialog.setSize(CP_PREF SIZE);
centerLocation(blastDialog);
blastDialog.setVisible(true);

}

Next we add a method to create the report called createReport()
which takes the Collection object and a color formatter object called
ColorFormatter

private String createReport(Collection blastHits,
ColorFormatter colorFormatter) {
StringBuffer summary = new

148

StringBuffer("<html><body style=\"font-family: 'Monospaced',
Courier\">" +

"Input Sequence Name: + inputSegName +

"\n");
StringBuffer alignments = null;
if (blastHits == null || blastHits.size() == 0) {
summary.append("No hits found from BLAST");
} else {

summary.append("Summary of hits (Scroll down to
view alignments)\n" +

BlastHit hit;
BlastHsp hsp;
Iterator iterator = blastHits.iterator();

alignments = new StringBuffer("\nAlignments\n"
+
BTt \n");
int i = 1;
while (iterator.hasNext()) {
hit = (BlastHit) iterator.next();
String hitId = hit.getHitId();
String genbankId = getGenBankId(hitId);
StringBuffer tmp = new StringBuffer("" +
i++)

.append(". gi|<a
href=\"http://www.ncbi.nlm.nih.gov/entrez/viewer. fcgi?dopt=£fa
sta&list_uids=" + genbankId +
"\">").append(genbankId) .append(" length:

") .append(hit.getHitLen())
.append("\n");
summary.append(tmp);
alignments.append(tmp) ;
Iterator hspIte = hit.getHsps().iterator();
while (hspIte.hasNext()) {
hsp = (BlastHsp) hspIte.next();
alignments.append("Score =
") .append(hsp.getBitScore()).append(" bits E-Value: ")

.append(hsp.getEvalue()).append("\n\n");

int queryFrom =
Integer.parselnt(hsp.getQueryStart());

int queryTo =
Integer.parselnt (hsp.getQueryEnd());

int subjectFrom =
Integer.parselnt (hsp.getSubjectStart());

int subjecTo =

Integer.parselInt(hsp.getSubjectEnd());
appendSequences(alignments,
hsp.getQseq(), hsp.getMidline(), hsp.getHseq(),
NUMB_OF CHAR_PER_LINE,
queryFrom, queryTo,
subjectFrom, subjecTo, queryFrom < queryTo, subjectFrom <

Running BLAST using SwingBlast 149

subjecTo, colorFormatter);
alignments.append("\n");

}
alignments.append("\n");
}
summary.append(alignments);
}
return

summary.append ("</body></html>").toString().replaceAll("\n",
”
 L) ;

}

The color formatter that adds colors to the DNA alignment is as follows:

private class ColorFormatter implements ColorFormatter {
public String format(String s)
String upperCaseSeq = s.toUpperCase();
String color;
String letter;
for (int i = 0; i < letters.length; i++) {
letter = letters[i];
color = letterToColor.get(letter);

upperCaseSeq = upperCaseSeq.replaceAll(letter,
"" + letter + "");

}

return upperCaseSeq;

}

The output of the program, which we call SwingBlast 2.5, is shown in
Fig. 3.31-3.32. Fig. 3.1 shows a high scoring alignment with a top hit (no
gaps) and Fig. 3.32 shows alignment with a sequence with a lower score
(with gaps).

150

[a)aka) SwingBlast Version 2.5

SwingBlast Blast Result Help
>gi| 6995995 | ref |[NM_000492.2| Homo sapiens cystic fibrosis transmembrane

conductance regulator, ATP-binding cassette (sub-family C, member 7) (CF

ATTGTCAGACATATACCARATCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATT Query
FELEEREEELEE LT LR L EEEEETEEETrT
ATTGTCAGACATATACCAAATCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATT Ma
GGARAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCT Query:
FELREREEETCLLE LR EE PR LRt
GGAARGAGAATGGGATAGAGAGC TGGCTTCAAAGAARAATCCTARACTCATTAATGCCCT Ma
TCGGCGATGTTTTTTCTGGAGATTTATG T TCTATGGAATCTTTTTATATTTAGGGGAAGT Query:
CELECLEEEE R R L
TCGGCGATGTTTTTTCTGGAGATTTATGT TCTATGGARTCTTTTTATATTTAGGGGAAGT Match:
CACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACCOGGATAA Query
R
CACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCCTATGACCOGGATAA Ma

CAAGGAGGAACGC TCTATCGCGATTTATCTAGGCATAGGC TTATGCCTTCTCTTTATTGT
FEPRERLLELLLLELEEE LR LR LR LEEEEEETETETTT
CAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGT Ma

TR), mRNA
AATTCCAMCCA AAR
TCTT 'CCAGAL CCAGCGCCC
< o GGATA CAAATCCCTTCTGTTGATTICTCCTGACAATCTAT
[-Xa):] BLAST Result for file /Users/hujol/blast-result-small.txt INTTAATGCCCT
Blast Result g C
CAGCCATTTT
Alignments i&cm | =
______ TACTTCAAT 4
1. gi|90421312 length: 6132 CAMAG v
Score = 1150.26 bits E-Value: 0 prTAA =
CAGGCACCCAGAGTAGTAGGTCTTTGGCATTAGGAGC TTGAGCCCAGACGGCCCTAGCAG Query: 1..60
FELEERLLERLLLEEELEL R LR L EEEEEEEEEETTTTT
CAGGCACCCAGAGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAG Match: 51..110
GRACCCCAGCROCK CATGCAGAGETOGLCTC A CAGCGTTGICTC Query: 61..120
IIIIIIIi|IIIII||||]IIIII|IIJ|IIIIIII[III|IIIIIIII|]IIIIIIIIImm'l S
GGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCETTGTCTC t .
)
CAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAANGGATACAGACAGCGCCTGGA Query: 121..180
FELRERREELEE LR LR EL R EEEEEEEEETET
CAAACTTTTTTTCAGCTGGACCAGACCAATTT ACAGACAGCGCCTGGA Match: 171..230 &
+ 181..240

itch: 231..290
241..300
itch: 291..350
+ 301..360
itch: 351..410
¢ 361..420

itch: 411..470

t 421..480

tch: 471..530

| NS

Fig. 3.31. Alignment without gaps

Running BLAST using SwingBlast 151

000 SwingBlast Version 2.5

SwingBlast Blast Result Help
>gi| 6995995 |ref |NM_000492.2| Homo sapiens cystic fibrosis transmembrane
conductance regulator, ATP-binding cassette (sub-family C, member 7) (CF
TR), mMRNA
ANTTCGAAGCARATCACATCACAGCACGTCAGAGAMANGGCTTGAGCCGCAGGCACCCAGAGTAGTAGS
TCTTTCGCCATTACCAGCTTCACCCCACACCGCCCTACCACCGCACCCCACGCCCCCCACACACCATGCAGAG
GTCGCCTCTGGAAM CCAGCGTTGTCTCCAAACTTTTTTTCAGCTGCGACCAGACCARTTTTGAGGALA
3 GCA CAGCGCCTGCAATTCTCAGACATATACCARATCCCTTCTCTTCATTCTGCTGACAATCTAT
8eNne BLAST Result for file /Users/hujol/blast-result-small.txt !ATTAATGCCCT
ITCACCAMAGCA
Blast Result \ACGCTCTATCG
o CCAGCCATTTY
: 305..356 EOCTAOGARGA
e d \GATACTTCAAT

ATATTTAGGGG 3
|I||I IEIII|||I||||||1||I||||||I| IIII I||||I||||I|I =
CTGGAGATTT. ATGGACTC TATTTAGGGG Match: B9083..89134 [CTANTCANRG | ¥

Score = 123,399 bits E-value: 6.87635e-25

TTAGGAGCT CCAGACGGCCCTAGCAGGGACCC! C Query: 23..82
II||I||F|I|II|I|III|]||II IR |I||||I|IIII
TTTGGCATTAGGAGCTGGAGCCCAGCCT Gccccmcamc.mc CGACGCGCGCAGCGAC Match: 56719..56778
CATGCAGAGG CTCTGGAAAAGGCCAGCGTTGTCTCCAAACTTTTTTT CAG Query: 83..135 E—. =
I|I|||IiIIII||||I|II|'II|||IIII|II |||||I|II|I|IIIIIII Clear) (Submit)
CATGCAGAGG TOGCCTCTGGAAAAGGCCAGCGTCCTCTCCAAACTTTTTTT 'CAG Match: 56779..56832
23, gi|14572135 length: 150149 —_—

Score = 287.934 bits E-Value: 2.02895e-74

GGAAGTCACCARAGCAGTA ACTGGGAAGAATCATAGCTTCCTATGACCC Querys 355..414
IIIIIIIIIIIIIIIIII IIJIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIII I
GGAAGTCACCAAMGC.

AGTCCAGCC TTCCTATGATCC Match: 67619..67678

GGATRARCA ACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTT Query: 415..474
PEECCEEEE EEREEEEEEr T P L
AGATARCAAGCAGGAACGCTCCATTGCAATCTACCTAGCCATTGGCTTATGCCTTCTCTT Match: 67679..67738

TATTGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGCC, ATCACA’ 'GCA Query: 475..534

IUETEEE T TEELT]|||||||||||||||||||||||||||||||||||||

TATCATGAGGCCGCTGCTCCTGCACCCAGCCATTTTTGGCCTTCATCACATTGGAATGCA Match: 67739..67798

GATGAGAATAGCTATGTTTAGTTTGATTTATAAGAAG Query: 535..571

||| |||i|||||||||||||]||||||||||||J|| ()]
TCAGAATAGC' ATAAGARG Match: 67799..67835

Score = 143.222 bits E-value: 7.41102e-31

Fig. 3.32. Alignment with gaps

Summary

In this Chapter we have demonstrated the development of a complete
BLAST application using the NCBI QBlast package. We created BLAST
API and demonstrated how they could be used for BLAST analysis using a
user interface, which allows users to send sequences to the QBlast service.
We demonstrated the use of existing BioJava libraries to retrieve
sequences from GenBank. We also enhanced the BLAST search output by
allowing users to link returned hits to GenBank and to view alignments in
color. The NCBI BLAST service is an indispensable resource for
biomedical research and is frequently among the first analytic tool that is
used in routine research investigations. The purpose of this Chapter was to
provide the user with a comprehensive understanding of the resource as
well as to demonstrate how J2EE can be used to develop user-friendly
applications to simplify this fundamental research activity. In the next

152

Chapter, we will explore another useful resource — PubMed and expose a
different aspect of Java — namely, JavaServer Pages and Java Servlets.

Questions and Exercises

1. We have built SwingBlast to retrieve sequences from GenBank.
Enhance the application by including the functionality to retrieve
sequences from other data sources such as Ensembl, Swiss-Prot,
ete.

2. The aim of BLAST searches is to provide information on the
biological function of an unknown piece of nucleotide or protein
sequence. Write an application that takes the basic SwingBlast
framework and provides information on the returned hits from
other functional data sources such as Entrez Gene, UniGene, Gene

Expression Omnibus (GEO), HomoloGene, OMIM (Online
Mendelian Inheritance in Man™), etc.

Additional Resources

* Ensembl - http://www.ensembl.org/index.html

* Entrez Gene - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
* GEO - http://www.ncbi.nlm.nih.gov/projects/geo/

* HomoloGene - http://www.ncbi.nlm.nih.gov/entrez/query .fcgi

* OMIM - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

* Swiss-Prot - http://www.expasy.org/sprot/

* UniGene - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

¢ QBlast - http://www.ncbi.nlm.nih.gov/BLAST/Doc/urlapi.html

Running BLAST using SwingBlast 153

Selected Reading

UniGene: a unified view of the transcriptome. Pontius JU, Wagner L,
Schuler GD. In: The NCBI Handbook. Bethesda (MD): National Center
for Biotechnology Information; 2003.

NCBI GEO: mining millions of expression profiles - database and tools
Tanya Barrett, Tugba O. Suzek, Dennis B. Troup, Stephen E. Wilhite,
Wing-Chi Ngau, Pierre Ledoux, Dmitry Rudnev, Alex E. Lash, Wataru
Fyjibuchi and Ron Edgar. Nucleic Acids Research, 2005, Vol. 33,
Database issue D562-D566.

An Overview of Ensembl. Ewan Birney, T. Daniel Andrews, Paul Bevan,
Mario Caccamo, Yuan Chen, Laura Clarke, Guy Coates, James Cuff, Val
Curwen, Tim Cutts, Thomas Down, Eduardo Eyras, Xose M. Fernandez-
Suarez, Paul Gane, Brian Gibbins, James Gilbert, Martin Hammond, Hans-
Rudolf Hotz, Vivek lyer, Kerstin Jekosch, Andreas Kahari, Arek
Kasprzyk, Damian Keefe, Stephen Keenan, Heikki Lehvaslaiho, Graham
McVicker, Craig Melsopp, Patrick Meidl, Emmanuel Mongin, Roger
Pettett, Simon Potter, Glenn Proctor, Mark Rae, Steve Searle, Guy Slater,
Damian Smedley, James Smith, Will Spooner, Arne Stabenau, James
Stalker, Roy Storey, Abel Ureta-Vidal, K. Cara Woodwark, Graham
Cameron, Richard Durbin, Anthony Cox, Tim Hubbard, and Michele
Clamp. Genome Res. 2004 May; 14(5):925-928.

Chapter IV

Facilitating PubMed Searches: JavaServer Pages
and Java Servlets

Introduction

J2EE is a powerful platform for developing sophisticated web-based
applications. This J2EE feature is especially critical for Bioinformatics
software development given the availability of a large number of important
biological sequence and biomedical data repositories on the WWW that
biologists need to access on a routine basis for their research. We will
explore one such resource - NCBI PubMed - in detail in this Chapter and
introduce the Java Servilet and JavaServer Pages (JSPs) technologies to
facilitate searching, retrieval and storage of biomedical data from PubMed.

HTTP and CGl

We will begin by refreshing our basic knowledge of standard protocols
such as the Hypertext Transfer Protocol (HTTP) and the Common
Gateway Interface (CGI) that allows for a server to pass requests from a
client web browser to an external application and in return allow the web
server to return the output from the application to the web browser.
Although there are several more HTTP commands than GET and POST,
we will introduce only these methods here and refer interested readers to
the HTTP specification Request for Comments 2616 (RFC 2616) for more
information.

156

HTTP Protocol

HTTP is a client/server protocol that WWW users utilize everyday to
download web pages to their web browsers. The client part of this protocol
is handled by the web browser that sends a request to the server (also
called an HTTP server or a web server). The server responds to the request
with a web page. That, put very simply is all that HTTP does, at least for
the purpose of this discussion.

The request sent by the client contains an HTTP command with a set of
parameters that define the request. For example, to request an HTML
document called index.shtml from the NCBI server, one can issue the
following command using telnet:

telnet www.ncbi.nlm.nih.gov 80
GET /blast/index.shtml HTTP/1.0

telnet is a program that connects a local computer to a server on the
network and allows users to issue commands directly to the remote server.
The HTTP protocol works over the Transmission Control Protocol/Internet
Protocol, a suite of communications protocols used to connect hosts on the
WWW, also called TCP/IP for short. In this case, the HTTP protocol
works over the TCP/IP protocol that one can access through a session
initiated by telnet, using the specified server address
(www.ncbi.nlm.nih.gov) and the port (80).

There are other pieces of information that could be passed to the
request, to specify information about the client and the type of data it
would like to receive. Also a blank line specifying the end of the request
must be added at the end.

When such a request is sent to the NCBI server, the output received
contains several difference bits of data, along with the actual document
requested, if found.

HTTP/1.1 200 OK

Date: Sun, 12 Feb 2006 18:13:42 GMT
Server: Nde

Accept-Ranges: bytes

Content~Type: text/html

Connection: close

<?xml version="1.0" encoding="UTF-8"?2>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 157

Transitional//EN"
"http://www.w3.0org/TR/xhtml1/DTD/xhtmll-
transitional.dtd">

(The output has been truncated for clarity.)

The first line corresponds to a code indicating the status of the response
- 200 OK - which means the requested operation was executed
successfully. After the status line we have information about the server
itself. Finally if the document is available it is sent within the rest of the
response.Other code and associated descriptions are defined in the HTTP
specification and provide information regarding any problems accessing
the server, if the requested document is not found, etc.

GET and POST Methods

Although a client can send different HTTP commands, the GET and
POST commands are the most commonly used. GET allows users to
retrieve or get information from an HTTP server, while the POST HTTP
command allows users to post or send information to the server. The POST
information resides on the server, usually within a database. The GET
command is just for querying the HTTP server and therefore won’t be
stored, unless for statistical purposes or for logging the load on the server.

GET can send parameters within the body of the URL to specifically
query the HTTP server. Since GET was designed for querying purposes,
the URL length is limited to a certain number of characters (250) on
certain servers. The POST method, on the other hand, can send more
information, including different documents types, and does not have a
constraint on length.

CGl For Generating Dynamic Content

According to RFC 3875, CGl is a

“... simple interface for running external programs,
software or gateways under an information server in a
platform-independent manner.”

158

This simply means that if you have a program that runs on your Unix
machine and you want to access it through a web browser, you can do so
using CGI. The way it works is that each time you request to run that
program, the web server will create an instance of the program, pass to it
all the parameters obtained from the request that was sent, wait for the
program to process the information and then wrap the program output into
an HTTP response.

This allows users to generate the content of a web page dynamically
instead of accessing static HTML content. It can be very slow when 100
users access the same program because the server must create 100
instances of the same program to run the 100 queries.

A number of vendors have implemented their own API’s to handle the
performance issues of CGI or to replace that interface with proprietary
protocols. Sun Microsystems, for example, has developed proprietary
technology that will run in a Java Virtual Machine and handle the required
processes that live on the server via the Serviets and JavaServer Pages
technologies.

Servlets and JavaServer Pages Technologies

Now that we’re more familiar with HTTP, it’s time to learn about
servlets and JSPs. Before we present the Java API, lets briefly review the
advantages of using servlets over typical CGI programs:

* Once the serviet container is started, each servler runs in the same
process as the container; this avoids creating new processes for each
request, unlike CGI programs.

* Because the servlet is created once at startup, it remains in memory and
there is no overhead associated with loading the Java class multiple
times. The service just needs to request the servier from a pool and call
its service method.

* A servlet is reusable, which saves memory and time.

These characteristics allow faster execution of the server processes to
generate dynamic content. In addition, the fact that it is Java brings with it
the power of the *“Write once, run everywhere” properties of the platform.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 159

Java API for Servlets and JSPs

From the servier specification available at the Sun Microsystems
website, a servlet is defined as a “Java technology-based Web component,
managed by a container, that generates dynamic content”. Servlets are Java
classes that implement a base interface called servlet, from the
javax.servlet package available in the Java Enterprise Edition Platform.
javax.servlet.Servlet is the basic interface which provides the
service() method that handles a client request independently of the
protocol used to communicate between the client and the server. To create
a servlet one can directly implement this interface or extend
GenericServlet Or HttpServlet.

The life cycle of a servlet is managed through three methods:

* init: the container instantiates a servlet object and calls init to
initialize it.

* service: upon a client request, the container get the servlet and calls its
service method.

* destroy: when the servlet is not in use any more, the container will call
the destroy method.

Fig. 4.1 below shows the life cycle of a serviet (called MyServlet) when
a client request comes to the container.

y

Client

\

response MyServlet.service()

Servlet Container

Fig. 4.1. Life cycle of servlets

Since we want to deal with HTTP requests, we are primarily interested
in the javax.servlet.http.HttpServlet package to create HttpServlet
Java classes. We will learn more about this package in the next few
sections.

160

kK

Before we delve into the servlet and JSP technologies, let’s briefly
review the MVC framework that we had introduced in Chapter 1, which
we will be using as a guiding principle for building our web application.
We will also briefly review the Apache Tomcat Server, which we will use
as our servlet container. Finally we will also talk briefly about the
JavaServer Pages Standard Tag Library (JSTL), to introduce the concept
for the benefit of readers to explore further on their own.

JavaServer Pages Standard Tag Library (JSTL)

JavaServer Pages (JSPs) use custom tags to perform all kinds of
manipulations like iterating over collections, transforming one object into
another, form processing, database access, and the like. The idea behind
JSTL is to create libraries with reusable tags. These tags can be used and
customized like functions or methods in Java. This also creates clarity in
the JSP file because the rags allow users to keep the JSP as the View and
the business logic or the Controller and the Model separated from each
other. In other words, one can think of JSTL as a Java package that groups
together functionalities into a set of independent and reusable and tags.

Apache Tomcat Server

Tomecat is an open source serviet container, which implements the Java
Servlet and JavaServer Pages technologies written in Java. This is the
servilet container we will be using in this Chapter. The Tomcat servlet
container allows developers to deploy web applications as well as to
monitor and manage them. Tomcat compiles the JSPs into serviets when
first called, or just before calling the application. Tomcat also allows
defining the realm for specific authentication and authorization services
that may be required for web applications. A "realm" in Apache
terminology is "a "database" of usernames and passwords that identify
valid users of a web application (or set of web applications), plus an
enumeration of the list of roles associated with each valid user." The reader
is referred to the Appendix for further information on how to install
Tomcat. More information can also be found at the Apache Tomcat Project
website of The Apache Software Foundation.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 161

The NCBI PubMed Literature Search and Retrieval
Service

PubMed is a resource maintained by the National Library of Medicine
(NLM), under the aegis of the National Center for Biotechnology
Information (NCBI, National Institutes of Health, USA) and provides
access to over 14 million citations for biomedical articles dating back to
the 1950's. PubMed is a vast resource and covers scientific findings from a
diverse array of disciplines including but not limited to the natural and
physical sciences. According to usage statistics from NCBI, over
59,000,000 queries secking scientific information were submitted to the
PubMed server in March 2004 alone
(http://www.ncbi.nlm.nih.gov/About/tools/restable_stat_pubmed.html).
Indeed, PubMed is an indispensable resource for researchers all over the
world.

As vast and valuable as PubMed is, average users still have to contend
with the problem of retrieving useful and relevant knowledge from the
underlying database in a piecemeal fashion using one or more keywords.
PubMed also doesn’t currently provide a way to intelligently or visually
analyze the results of a query (for example, by highlighting or color coding
the search terms in a retrieved abstract, etc). We will address some of these
issues and create solutions for them in this Chapter to enhance the value of
literature search and retrieval through PubMed.

Accessing Biomedical Literature Through Entrez

Access to information in NCBI databases is granted through a service
called Entrez, a search and retrieval system maintained by NCBI that
combines information on individual DNA and protein sequences, large-
scale sequence data from whole genomes, and information on 3-
dimensional structures of biomolecules. It also grants access to
MEDLINE, which covers research in a number of Life Science areas such
as medicine, nursing, dentistry, veterinary medicine, the health care
system, and preclinical sciences. The steps involved in a typical search on
PubMed are described below. We will use the generic keyword “HIV” (for
Human Immunodeficiency Virus, the causative agent of Acquired Immune
Deficiency Syndrome, AIDS) for the illustration.

Step 1: User navigates to the NCBI PubMed website (Fig. 4.2):

162

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed

Step 2: User enters the search term 'HIV' (the search is case-insensitive)
in the search box and presses Enter. PubMed presents the user with a list of
citations relevant to the search term (Fig. 4.3). Internally, PubMed searches
for a match between the supplied keyword(s) and terms in the Medical
Subject Headings (MeSH) Translation Table, an alphabetical hierarchy of
controlled vocabulary terms used for subject analysis of biomedical
literature at the NLM. The list of citations may span several thousand
pages depending on the number of articles that match the search term.
Each journal article on PubMed is associated with a unique numeric tag
called the PubMed Unique Identifier or PMID.

Step 3: User clicks on the citation to display specific information (Brief,
Abstract, Medline etc) about each journal article (Fig. 4.4) or selects
several articles to display (Fig, 4.5).

[5F Entrez Pubbed - Mozilla
. B [e o (ockmaks loch wrdw b

i Qo 0 0 o i, ict.rie. . o ety eluery fogiidbeiubMedidnoisboobisr] [Aseaeh) dﬂm
Nattonal
PublfQed .M

Search PubMed = | for | Go || Clear |
Limits Previewlinder History Clipboard Detalls
« Enter one or more search terms, or click
Preview Tndes for advanced searching
* Enter author names as south je Iutials are
optional
o Enter jomnal titles in full or as MEDLINE
abbreviations. Use the Jowmals Database to
finel yournal titles

Entrez
PubMed

PubMed, a service of the Mational Library of
Medicine, includes over 15 million citations for
biomedical articles back to the 1950's. These
citations are from MEDLINE and additional life

science journals. PubMed includes links to many
sites providing full text articles and other related
resources.

PubMed
Sarvices

|| Bookshelf Additions [Clinical Queries

s page

Molecular Biolagy — The Clinical Qus
N of the Cell, 4th was redesig
Ed. and The provide an Improved

=l
E Lol

Fig. 4.2. The NCBI PubMed web resource

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 163

National

Library
af Medicine

Limits Previewfindex History Clipboard Details
Summary > Show: 20 ~| Sont o Text &
Items 1 - 20 of 176349 | Page | 1 of 8818
[1: El-Hoge ¥, Gurwell TA, Smgh IN, Euopp PE. Nath A, Houser EF. R
E"':;: : [E Swergistic increases in intracellular Ca(2+), and the release of MCP-1, RANTES, and
aeed IL-6 by astrocytes treated with opiates and HIV-1 Tat
Gilia, 2008 T 3: [Epub ahead of prut]
PMID: 15630704 [PubMed - as supphied by publicher]
m2: Easow BA. Doral: T, Tang IT
[Mflnence of Host Genetic Variation on Susceptibility to HIV Type 1 Infection

T lufect Dns. 2005 Feb 1,191{Suppl 1):568-77
PMID: 15630678 [Pubbed - m process)

r13: Papasmovas E Kosh TE.. Mo E. Grant BM. Gross B, Gallo O, Azzom L, Ralated Arcles, Lirks
Foul . Thuel . M. Mackiewic b J. Moutaner LT

[Randomized, Controlled Trial of Therapy Intermuption m Chronie HIV-1 Infection

PLoS Med. 2004 Dec.1(3)e64. Epub 2004 Dec 28

PMID: 15630409 [Pubed - as supplied by pubhsher]

» Wong FX X Y, Sullivan J. Souder E. Arsvrie EG, Achieaupong EA.

1 Anlicles, Links

PubMed

Services

i
M.\«Iadlc:::
Limits Previewlindex History Clipboard Details

Display | Abstract “|8how 20 ~ison |[Sendto|Tes |

1 Glia. 2005 Jan 3: [Epub ahead of prnt]

C. inerScionce

Entrez
Synergistic increases in intracellular Ca(2+), and the release of MCP-1,
RANTES, and 1L-6 by astrocytes treated with opiates and HIV-1 Tat.

4 El-Hage N, Gurwell JA. Singh IN, Knapp PE, Nath A, Hauser KF.
=Ll
Deepartment of Anatomy and Neurobiology, University of Kentucky Colleze of Medicine,
Lexington, Kentucky

PubMed

Services

Recent evidence suggests that myection drug users who abuse herom are at mereased risk of

CNS complications from mman unmunodeficiency virus (HIV) mfection. Opiate dmgs may

mtrnzically alter the pathogenesis of HIV by directly modulating e function and by

divectly modifving the CNS response to HIV. Despite this, the mechamsms by which opiates

ncrease the neuropathogenesis of HIV are uncertam. In the present study, we describe the

effect of morphine and the HIV-1 protemn toxin Tat(1-72) on astroglial function m cultures
—denved from ICR mice Astroelia mamtam the blood-bram barer and mflne

Fig. 4.4. Viewing abstracts for individual journal articles

164

3 Entrex PubMed - Mozilla Firefox

Ge ER Vom G Boclmeds ook Heb

G-y @r o) D) | % o)t b i o geeres{ ey S s arch A Bt

Avervics of e Watiosal Libvary of Medeoe
e the Nitiosal Inssnuies of Health

www. pobmed. gov

mwfinidex | Hissany | Clipooaen

v Sencito |

Duspley Abstract Snow| 20 ¥ | Senby
[Fage |11 of 9911 Mext
., 1 Petabed Aticlns, Link
=y Fetromrus ton strongly snhances scrapie miectivity release m cell culbae
25, [Epub whead of prnd]
Med . an pugpplied by publaher]
=2 Retabed Aticles, Links
= i sed gene expresnon through wiral evelubon
Sone Thee 2006 May 25, [Epih shesd of print]
FMIDY; 16734056 [Fublied - ax supphed by publishe:)
3 Lubsen NI S cha A, Dobous M, Pensey M Beez T Ameud I Titene M. Kiemer EL Coudese B Reiabes Aicies, Links

[=13:
E Lens cell targetting for gene therapy of prevention of pesterior capsule opacfication
Cens Thee 206 May 27, [Egur sk ad of past]

HIV deuabsts ignoce large gap o the srudy they cite,
Fature. 2006 May 12
FMID: [6724734 [Publied

m]
@

Pedated Atleles Links

Fig. 4.5. Selecting several articles to view abstracts

The user can save articles of choice in the chosen display format
(Summary, Abstract, etc) by selecting the required articles and pressing the
"Send to" button and selecting the appropriate format (Text, File, Email,
etc) (Fig. 4.6).

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 165

I Fntrez Pubberd - Mozilla

- Fe E® Yew G0 omais Joos Wedoe Heb

e T r—— D <% [
.‘<'<|l|nn4lﬁ
Library

of Medicine

« for HV [Go || Clear |

Limits Previewfindsx History Clipboard Datalis
Display | Summary v/8how: 20 ~ Sot ~|[Sendto|Temt |- '

Items 1 - 20 of 176349 L of BB18 hat
-~ File

@1 El-Hage N, Gurwell JA. Singh IN, Enapp PE. Nath A, Hager KF Clipboard

Entrez

PubMed E

Synerzstic mereases momtracellular Ca2+), and the release o NTES. and
IL-6 by astrocvies treated with oprates and HIV-1 Tat
Gl 2005 Jon 3 [Epob abead of prmt]

PMID: 15630704 [Publed - as supplied by publicher |

{ E-mail
Order

Influence of Host Genetic Vanation on Susceptibility to HIV Type | Infection
PubMed T Infect Dne. 2005 Feb 1191 (Suppl 1p568-77
5 PRMID: 15630678 [Publded - m process|
7 3: Pmpassvvac E. Eostinan TR, Mownzer K. Grant EM. Gross B. Gallo C, Azzom |
Foulkies A. Thiel B_ Pistilli M. icz A, Shull 1, Montaner 1T
Randomized, Controlled Trial of Therapy Intermuption in Clronic HIV-1 Infection
FLoS Med. 2004 Dec,1(3):e64. Epub 2004 Dee 28,
PMID: 15630469 [Pubhded - as supplied by pubisher]

Services

E w2 Y, Sullvcan 1, Sonder E, Asg
ML Thomson MA, Najern B, Frank [Eul

B I1.-7 1= a notent and vrovieal strain-soecific inducer of latent HIV-1 cellular rtn‘ﬂvujliqi ‘._E
==

Ed, Achemupong EA. Fisher 1. Sienan maigted Arhele
I, Powrerantz BJ, Numan G

Fig. 4.6. Saving search results for selected abstracts

The search process quickly becomes unwieldy especially when
information from a large number of citations needs to be extracted and
analyzed. In this Chapter, we will demonstrate the power of Sun’s
JavaServer Pages and Java Servlets technologies to build a web-based
application to simplify the process of accessing information on PubMed.
We will use the Apache Tomcat server as the servlet container and the
Apache Ant tool to build and deploy the Java web-based application.
Please refer to the Appendix to download the tools and for instructions on
using them.

Create Web Application With Servlets and JSPs

Servlets as we described earlier are Java code that run on a server and
provide a general framework for services built using the request-response
paradigm. HTTP, is one such paradigm that is implemented through the
Jjavax.servlet.http package from the Java Servlet API. On the other hand,
JSPs were designed to mainly allow the separation of the business logic
(what the application does) from the appearance of the page (how the
application displays the result).

166

The steps and the flow diagram below illustrate the behavior of such an
application (Fig. 4.7):

Step 1: The user accesses the application through a web browser. The
actual code that runs the application remains hidden from view. The user
only sees and interacts with an HTML page, which for our first application
will contain a simple search form consisting of a single text-box and a
submit button. The user enters a single keyword (search term) in the text-
box and presses the submit button. After the search is processed by the
application, the user sees the results in the web browser. Fig. 4.7 illustrates
the actions of the user in the User Space.

Step 2: The application is implemented as a servlet that gets the
information entered on the search form and processes the request on the
NCBI PubMed server. This involves a series of operations. The application
constructs the PubMed URL that is specific to the entered search term.
Next, through a URL object, it sends a request to the PubMed server. The
PubMed server performs the search using the keyword and formulates a
response, which is an HTML document containing a list of citations
matching the search term. These operations are shown in the Application
Space (Fig. 4.7).

Step 3: After processing the request, the PubMed server sends the search
results back; the application reads the result from the URL using a
BufferedReader object to retrieve the content sent back from the server.

Step 4: Once the response is received, the application reads the contents
of the response using the BufferedReader object and prints it out to the
screen using the javax.servlet.http.HttpServletResponse object.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 167

»i Servlet

Receive request from HTML Form
[HitpServletRequest object]

HTML Form .
| Get the search term

Enter search term on PubMed server:

: Submit

Create NCBI URL with the search term

Send request to NCBI PubMed
| URL object]

Get abstract from NCBI PubMed
[BufferedReader object]

e

=y R ——r L Send the HTML document back
PublMed =M | HitpServietResponse object]

User Space Application Space

Fig. 4.7. The structure of the PubMed1 servlet

Web Application Structure

According to the Java Servlet API Specification 2.2
(http://java.sun.com/products/servlet/download.html), a web application
(or web app) is a collection of serviets, HTML pages, classes, images, and
other resources that can be bundled and run on multiple containers from
multiple vendors. Simply stated, a web app bundles resources together to
provide a portable and server independent way to access information via a
web browser. In order to be portable and server independent, a web app
must be designed according to a well-defined schema that dictates where
the resources used by the web app are to be placed. This ensures that there
is no conflict between the different resources used by the web app. The
web app has to be installed on the web application server and mapped to a
specific uniform resource identifier (URI) path (called also the serviet

168

context path) on the server. The file structure of the web app is archived
into a WAR file (Web application ARchive).

For example, the application we are writing is installed on the web
app server using the path pubmed, for example:

http://localhost:8080/pubmed

as is explained further below. Here is the file structure of the pubmed
web app being developed:

example.html

pubmedExample. jsp
jsp/moreSpecificPubmedExample. jsp
pics/pubmedLogo.png

anotherLogoExample.png

WEB-INF/web.xml
WEB-INF/classes/servlet/DataRetriever.class
WEB-INF/lib/Jakarta-regexp-1.3.jar

The basic layout that defines a web app file structure is as follows:

* HTML, JSP, PNG (image) and other resource files must be located in
the root directory to be visible in the web browser.

* web.xml is located in the WEB-INF directory under root. web.xml is the
Web Application Deployment Descriptor for the application. This file
defines in an XML format the configuration information utilized by the
web app such as initialization parameters, servlet mappings, security
constraints, etc.

* WEB-INF/classes: This directory contains all the Java classes (and
serviets) with any resources associated with them that make the web
app. The Java class servlet.DataRetriever is stored in WEB-
INF/classes/servlet/DataRetriever.class

* WEB-INF/Iib: This directory contains all the Java™ Archive (JAR) files
required to run the web app, including third parties libraries such as
Jakarta-regexp-1.3.jar for regular expression matching.

Access to the web app or any resource from the web application server
available at the localhost and port 8080 is through the following URL:

http://localhost:8080/pubmed

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 169

This access is set up in the Astp.conf configuration file located in the
Tomcat ‘conf directory. Any web application is deployed on the web
application server using a relative path.

If we want to access the HTML pages located in the WAR file in the
root directory, for instance, for a file called example.html, we open the
following URL in the web browser:

http://localhost:8080/pubmed/example.html

The WAR archive may also contain images that can be found in the
/pics directory. To access the pubmedLogo.png picture, for example, we
need to point our web browser to the following URL:

http://localhost:8080/pubmed/pics/pubmedLogo.png

To access the serviet DataRetriever, in the web app descriptor file we
wrote the mapping from the path in the URL to the actual Java class that is
going to handle the HTTP request. This Servlet can be accessed at the
following path:

http://localhost:8080/pubmed/DataRetriever

Creating a Servlet to Access Biomedical Literature

We begin by declaring a package called pubMed. Next, we import the
necessary packages, which contain the classes that are used by the servliet.
In order to implement the design described in Fig. 4.7, we need to create a
Java servlet class called PubMedServletl 1 that extends
javax.servlet.http.HttpServlet, the standard base class for HTTP
serviets. We then need to override the doGet () method as shown in the
code below. The doget() method takes two parameters: the
HttpServletRequest object (called req) which is the client request and an
HttpServletResponse object (called res) which is the response sent back
to the client. Since the method returns nothing, its return type is void.

It is conceivable that the process of sending a request to a remote scrver
and obtaining a response back may encounter errors. Java has objects
called Exceptions to handle such occurrences. The Java Virtual Machine
(JVM) will inform the caller using Exception objects when a program does
not behave the way it is supposed to do. This object is "thrown" when that
error or unusual condition occurs and it stores information about the

170

particular error event. In order to inform the developer that such an
exception can be “thrown” from the method, we use the appropriately
named "throws" Java keyword in the method signature. We declare
servletException, which defines a general exception a servlet can throw
when it encounters errors and I0Exception to catch errors due to failed or
interrupted I/O operations. Another way to handle exceptions is to use the
try-catch block. We will see how to use try-catch blocks later in the
Chapter.

Let’s return to the servlet creation process. The general signature of the
doGet method is shown below:

Protected void
doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException { }

since we are sending a text or HTML response, we set the content type
to text/html with the line:

res.setContentType("text/html");

Next we request a PrintWriter object to write the text to the response
message:

PrintWriter out = res.getWriter();

Next we create HTML to create a form that users can utilize for
conducting searches on PubMed. In its simplest state, the form will have a
title, a search box and a submit button. The HTML for the form is as
follows:

<HTML>
<HEAD><TITLE>PubMed Servlet 1.1</TITLE></HEAD>
<BODY>
Java for Bioinformatics:
PubMed Servlet version

1.1\n

Please enter a term to search on NCBI

PubMed:

\n
<FORM METHOD=GET>\n
<INPUT TYPE=TEXT NAME=searchTerm>

\n
<INPUT TYPE=SUBMIT VALUE=\"Search PubMed\">
\n

</FORM>
</BODY>
</HTML>

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 171

The search form as it appears in a browser is shown in Fig. 4.8.

[PubMed Servlet 1.1 - Mozilla

. Fle |Edt Wew Go Bookmarks Tools Window Help

GO 0 0 Q [\.- hittp:/flocalhost: 8080fpmd_05-01-03-201546/7searchTerm=HIV

Java for Bioinformatics: PubNled Serviet version 1.1

Please enter a term to search on NCBI PubMed:

Search PubMed_

Fig. 4.8. The PubMed servlet version 1.1 search form

To implement the form in code, we create an object called html of the
type StringBuffer:

StringBuffer html =

new StringBuffer("<HTML>");

and append the HTML code to it:

StringBuffer html =

new StringBuffer ("<HTML>");
html.append("<HEAD><TITLE>PubMed Servlet
1.1</TITLE></HEAD><BODY>\n");

html.append("Java for Bioinformatics: ");

html.append("PubMed Servlet version
1.1\n");

html.append("

Please enter a term to search on NCBI
PubMed:

\n");

html.append("<FORM METHOD=GET>\n");

html.append("<INPUT TYPE=TEXT NAME=searchTerm>

\n");

html.append("<INPUT TYPE=SUBMIT VALUE=\"Search
PubMed\">
\n");

html.append("</FORM>\n");

The URL to send the search term is:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10&db=pubmeds
cmd=search&term=term

In code we implement this in the following manner:

172

URL url = new URL
("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10&db
=pubmed&cmd=search&term=" + URLEncoder.encode(term, "UTF-
8"));

Note the parameters on the URL (separated by ampersand symbols '&")
that specifies what information we want to submit to the PubMed engine to
retrieve data:

dispmax=10
db=pubmed
cmd=search
term=term

We are limiting the search to ten articles (dispmax=10) for the purpose
of illustration only. We select the database as PubMed (db=pubmed) and
provide the command to search (cmd=search) with the search term
(term=term). Next, we open the connection to the server:

URLConnection urlConnection = url.openConnection();
BufferedReader reader = new BufferedReader (new
InputStreamReader
(urlConnection.getInputStream()));

In the next step, we construct a regular expression to extract the
PubMed Ids (PMIDs) of the abstracts that match the search term and create
an array to store them. To do this, we will use a Java Regular Expression
package available from The Apache Jakarta Project available as a JAR file
called jakarta-regexp-1.3.jar:

String s = null;
RE pmidRE = new RE("PMID: ([0-91+) \\[PubMed");
Collection pmids = new ArrayList();

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmids.add(pmidRE.getParen(1l));
}
}

reader.close();

Listing 4.1 shows the code for PubMed servlet version 1.1

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 173

Listing 4.1. PubMed Servlet version 1.1

package org.jfb.PubMed;

import org.apache.regexp.RE;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.*;

import java.net.URL;

import java.net.URLEncoder;

import java.net.URLConnection;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Iterator;

import java.util.Properties;

public class PubMedServletl 1 extends HttpServlet ({
protected void doGet (HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();

StringBuffer html = new StringBuffer ("<HTML>"});

html.append("<HEAD><TITLE>PubMed Servlet
1.1</TITLE></HEAD> <BODY>\n");

html.append("Java for Bioinformatics: ");

html.append("PubMed Servlet version
l.1\n");

html.append("

Please enter a term to search
on NCBI PubMed:

\n");

html.append("<FORM METHOD=GET>\n");

html.append("<INPUT TYPE=TEXT
NAME=searchTerm>

\n") ;

html.append("<INPUT TYPE=SUBMIT VALUE=\"Search
PubMed\">
\n");

html.append("</FORM>\n");

String term = req.getParameter("searchTerm");
if (term != null) {
html.append("
<HR>
");
html.append("You have searched NCBI for the term
'" + term + "'.");
URL url = new
URL("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10
&db=pubmed&cmd=search&term=" + URLEncoder.encode(term, "UTF-
8"));
URLConnection urlConnection = url.openConnection();
BufferedReader reader = new BufferedReader(new
InputStreamReader (urlConnection.getInputStream()));

String s = null;

174

RE pmidRE = new RE("PMID: ([0-9]+) \\[PubMed");
Collection pmids = new ArrayList();

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmids.add(pmidRE.getParen(l));
}
}

reader.close();

html.append("

PMIDs found:
\n");
int i = 1;

for (Iterator iterator = pmids.iterator();
iterator.hasNext();) {
String sl = (String) iterator.next();
html.append("<a href=\"")

.append("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Re
trieve&db=pubmed&dopt=Abstract&list_uids=")
.append(sl)
.append("\">")
.append(sl)
.append("\n");
if (iterator.hasNext() && i++ != 5) {
html.append(" - ");
} else {
html.append("
");
}
}
}
html.append("</BODY></HTML>\n");
out.print(html.toString());
}
}

The next few lines of code iterate over the array for each of the PMIDs
of abstracts matching the search term and print them out along with a
hyperlink to the original abstract on PubMed. The structure of the servlet
and its component files is shown below (Fig. 4.9).

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 175

PubMed

|— &
L o
L jfb
_ PubMed

—— PubMedServiet1_1.java
—— PubMedServiet!_2 java
L—— PubMedServiet1_3 java

Fig. 4.9, The PubMed servlet structure

To see the servlet in action, start the Apache Tomcat Server, compile the
code and run it with the command:

ant install

Apache Ant is a Java-based build tool used to manage the different steps
in the development cycle of an application, which include compilation of
the code libraries needed for the application, creating the necessary JARs
for deploying an application, etc. It is available from The Apache Software
Foundation website. For further information on installation and use, please
refer to the Appendix.

T — =g
L0 0 9 Forww o) (s <4, mg

Apache Tomcat! 5.4

& e Avache Jakarta Profect

¥ you're sesing this page via s web browser, It means you've setup Tomeat succasstully.
Congratulations’

£ 23 b ol o the kgl

NEE O it o o e o Tl Mg Sgiconen” o imcabss SO0
U e

= 1

70 CHOCIEd - IC 5.l ®a

Fig. 4.10. Logging into the Tomcat Manager

176

Open the following URL:
http://localhost:8080

When the Apache Tomcat welcome page loads, click on the Tomcat
Manager visible on the left panel and login into the server using the
credentials you specified during installation (Fig. 4.10). Access the latest
build of the application to view the serviet. The output of the search with
the keyword HIV using the first version of our program, which we will call
PubMed Servlet version 1.1, is shown in Fig. 4.11.

[pubMed Servlet 1.1 - Mozilla

. File Edt Wiew Go Bookmarks Tools ‘Window Help

OO @Q O O | % hetp:jfiocathost:6080jpmd_05-01-05-2024017searchTerm=HIY

&} [S Entrez Pubied | 5 pubtied Serviet 1.1 I

Java for Bioinformatics: PubMled Servlet version 1.1

Please enter a term to search on NCBI PubMed:

Search PubMed

You have searched NCBI for the term "HIV'.

PMIDs found:
15630704 - 15630678 - 15630469 - 15630452 - 15630446
15630430 - 15630360 - 15629958 - 15629857 - 15629784

Fig. 4.11. Output from the PubMed servlet using search term "HIV"

In the first version of the application, we are simply validating our
approach and displaying just the PMIDs for the abstracts that match the
entered keyword. To check that the code works and retrieves the correct
data, we hyperlink the PMIDs to the original abstracts on PubMed.
Clicking on 15630704, for example, opens up the abstract corresponding

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 177

to the PMID for the abstract that shows up in the search performed directly
on the NCBI PubMed webpage (Fig. 4.12).

Nathonal
Library
r)(.‘lrdlnm;i

[Go Clear]
History Clipboard Diatails
= Show |20 =/ Sent <[Sendto | Tew

o1z Glia. 2005 Jan 3. [Epub ahead of prnt]
(L interscionce
Synergistic increases in intracellular Ca2+), and the release of MCP-1,
RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat.

El-Hage N. Gurwell JA. Singh IN, Knapp PE. Nath A. Hauser KF.

Diepartinent of Anatomiy and Newroliology, Universaty of Kentucky Colleze of Medicine.
Lexington, Kemucky.

Recent evidence sugzests that ijection dmz users who abuse herom are at increased nisk of

CNS complications from hman nnmmmodeficiency vims (HIV) mfection. Cpiate dugs may

mtrinsically alter the pathogenesis of HIV by directly modulating immmme function and by

directly modifying the CNS response to HIV. Despate this, the mechamsms by which opiares

urease the neropathogenesis of HIV are uncertan, I the present study, we describe the
. : : Tan1.7 ¥ i ;

Fig. 4.12. PubMed article corresponding to PMID 15630704

The results in Fig. 4.11 and Fig. 4.12 are identical to the search output
obtained from a search with the keyword 'HIV' at NCBI PubMed at the
time of this writing (Fig. 4.13).

N e

" Q’g @ @ B e] | [seareh | ﬂﬂm
e =T

athornal E

Pub&med

% i

Liree T rasawinge s Histry Chpbun
Ciaglay | Gral wiEewl 20 wfsen [Bendw]Ter

Thams 1 = 30 of 176342 =2 uf ERLE
e el ol Syuergistic mereaves it [PMID: 15530704 :
audow A of ol Influence of Host Clenetic Var. [PMID: 14630675]

+ Papaswcicas E ot ol Randonzed. Controlled Trial . [PMID. 1 5630468]

[di Wang FX et al L7 i 0 potent and proviral,[PMID- 15630452

ol Tdeutification of celila de [PRIID: 15630:446]
Gunzaler-Searsno F et ol The newspathogenesis of AIDS [PMIT 14630-430]
El et ol Alterations of Nasal Muconl . [PAID; 15630360}

t ol Protease Inhibitor Combuatio. [PAID: 14620045

(1% Wimnermwicz M et al Hamessmg HIV for therapy, b [P 14620857]
abey B et sl A PNA-asportan conjugate £ [PMID 156297%4]

{ al. Plophorylation of HIV Nef by, [PMID: 15620770]

I} et ol Masmmakan SCAN Domam Dimer L [PMID: 15629724]

Fig. 4.13. Results of NCBI PubMed search with keyword "HIV"

178

Displaying PubMed Abstracts

In order to make the search output more useful for researchers, we
would like to parse the abstract from each citation and make it available
for viewing right up front as part of the search results. We will now create
the code to parse out the abstract from each of the articles that are returned
by a search.

The general framework of the program is as follows:

1. Create the search form

2. Retrieve the keyword(s) provided by the user

3. Retrieve PMIDs from PubMed corresponding to the search term
4, Retrieve abstracts based on each of the PMIDs obtained in step 1
5. Iterate #4 until all abstracts have been retrieved

To create the search form, we create a method called
createSearchForm() which creates a variable of type StringBuffer called
html and append the various html tags to it in succession:

private StringBuffer createSearchForm() {

StringBuffer html=new StringBuffer();

html.append("<HTML>");

html.append("<HEAD><TITLE>" + TITLE +
"</TITLE></HEAD><BODY>");

html.append("Java for Bioinformatics: ");

//html.append("PubMed Servlet
version 1l.1\n");

html.append("<hl>" + TITLE +
"</hl>");

//html.append("Please enter a userKeywords to search
on NCBI:

\n");

html.append("
Please enter a term to search on
NCBI PubMed:

\n");

html,.append("<FORM METHOD=GET>\n");

html.append("<INPUT TYPE=TEXT NAME=" + KEYWORDS +
">

\n");

html.append("<INPUT TYPE=SUBMIT VALUE=\"Search
PubMed\ ">
\n");

html.append("</FORM>\n");

return html;

}

Note that the text box for entering keywords is called KEYWORDS. We
will use this name to retrieve the user-supplied keywords. The resulting

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 179

search form for the next iteration of the application, which we will call
PubMed Servlet version 1.2, is shown in Fig. 4.13.

[PubMed Servlet version 1.2 - Mozilla

. File Edt Yiew Go Bookmarks Tools Window Help

@0 O @ Q |\ http:/flocalhost:8080/pmd_0S-01-12-212042]

Java for Bioinformatics:

PubMed Servlet version 1.2

Please enter a term to search on NCBI PubMed:

I Search PubMed]

Build #05-01-12-212042
Fig. 4.13. PubMed servlet search form version 1.2

We then retrieve the keyword(s) from the search box using a method
called getUserKeywords () :

String userKeywords = getUserKeywords (req);

This method takes in the HtfpServietRequest req object as a parameter to
return the keywords:

private String getUserKeywords (HttpServletRequest req) {
return req.getParameter (KEYWORDS) ;

}

The next few lines perform some basic user input validation. If you
press the search button without supplying any keywords, for example, the

180

program will return an error message: "Please enter keywords to search.”
(Fig. 4.14).

. File Edit Yiew Go Bookmarks Tools ‘Window Help

00 Q @ O [S httpifflocalhost:3080/pmd_05-01-10-210824/?keywords=

Java for Bioinformatics:

PubMed Servlet version 1.2

Please enter a term to search on NCBI PubMed:

Search PubMed

ERROR

Please enter keywords to search!

Build #05-01-10-210824
Fig. 4.14. User-input validation

We then create a variable of type StringBuffer called sbpmids to store
PMIDs corresponding to the search terms and a String variable called
searchURL to specify the search URL:

StringBuffer sbPmids = null;
final String searchURL =
"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10&db=
pubmed&cmd=search&term=" + URLEncoder.encode (userKeywords,
"UTF-8");

Next we write a method called getPmids () to retrieve PMIDs from the
keywords. The method takes one parameter, the searchURL, which in turns

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 181

contains the keyword(s) embedded in it. The result of the operation is
stored in an object called sbPmids:

sbPmids = getPmids (searchURL);

We place the method within a try-catch block we had briefly mentioned
earlier to catch any exceptions that may arise while the request is sent to
PubMed. If we do indeed encounter an exception, the method will trap the
error, print out the offending error message and exit.

try {
sbPmids = getPmids(searchURL);
}
catch (IOException ioe) {
ioe.printStackTrace();
errorMes = "

We are sorry, the
system could not establish connection to the NCBI PubMed
server " + "with the URL "" + searchURL + "".
Please try again later.

";

}
The method getPmids () itself looks like this:

private StringBuffer getPmids(String searchURL) throws
IOException {
BufferedReader reader = new BufferedReader (new
InputStreamReader (new
URL(searchURL) .openConnection().getInputStream()));
StringBuffer sbPmids = new StringBuffer();
String pmid;
String s = null;

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmid = pmidRE.getParen(l);
sbPmids.append(pmid + ",");
}
}
reader.close();
final int length = sbPmids.length();

if (length > 0) {
sbPmids.delete(length - 1, length);
return sbPmids;

} else {
return null;

182

The method:

BufferedReader reader = new BufferedReader(new
InputStreamReader (new
URL(searchURL) .openConnection().getInputStream()));

can be broken down into more readable chunks of code as follows:

URLConnection urlConnection = new
URL(searchURL) .openConnection();
InputStream inputStream = urlConnection.getInputStream();
BufferedReader reader = new BufferedReader (new
InputStreamReader (inputStream));

If no exceptions have been raised and if PMIDs have been obtained as a
result of the search, we proceed to get the abstracts from the PMIDs. The
method we use here is called getabstracts() and returns an object of
type StringBuffer called abstracts. The method takes a parameter called
urladdress, which specifies the location of the abstract based on the
corresponding PMID:

if (errorMes == null) {
if (sbPmids != null) {
String urlAddress = citationString +
URLEncoder.encode(sbPmids.toString(),
"UTF-8");
StringBuffer abstracts = null;

// 3. Retrieve the abstracts from the PubMed IDs
try {
abstracts = getAbstracts(urlAddress);
} catch (IOException ioe) {

ioce.printStackTrace();

errorMes = "

We are
sorry, the system could not retrieve the abstracts using
keyword(s) ""

+ userKeywords + "" with the URL

<PRE>"" + urlAddress + ""<PRE>

";

}
The code for the method getAbstracts() is as follows:

private StringBuffer getAbstracts(String urlAddress) throws
IOException {
BufferedReader citationReader =
new BufferedReader(new InputStreamReader (new
URL(urlAddress).openConnection().getInputStream()));
stringBuffer abstracts = new StringBuffer();

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 183

String s;
while ((s = citationReader.readLine()) != null) {
abstracts.append(s);

}

return abstracts;

Next we get information from the matching articles corresponding to
each abstract. This includes information such as the title, authors, source
journal in which the article was published, and the like. An example of the
MEDLINE format, which is parsed to extract this information, is shown in
Fig. 4.15. Note the tags on the left - PMID, OWN, DP, TI, AB, AU, AD,
SO. These represent respectively the PubMed ID, the owner (the
organization that supplied the citation data for MEDLINE), date of
publication, title, abstract, authors, address and source journal.

B Entone Publed - Mozilla

- B Bt Yew @ Qockmarks ook Wndow el

Q)o @ Q [tetp: e ncte rim. b o jenizeziquery fog M= Display Al B=pubmed | [ESenech | do g

d receptors, and are likely
tially activats mu-oploid
yte Function, when combined with

ubstituting a
ggest that

nergistically iner
t= flth°

may contrib

duals who &

of Anatomy and Neurobiology,
ine, Lexington, Kentucky.

I[atl-e H

80 - Glia 2005 dnn 37.

m ot | lf'-

Fig. 4.15. The MEDLINE format

Parsing of these elements is done using the jakarta regular expression
library. Let’s see how we can parse the PMID from the MEDLINE record
displayed above. Note that the PMID is bounded by the tags PMID and
OWN as shown in the enlarged Fig. 4.16 below.

184

[Entrez PubMed - Mozilla

. File Edit Yiew Go Bookmarks Tools

Window Help

-~

Q O O Q |\.— http:{{wwww.ncbi.nlm.nib, gov/entrez)i

1: El-Hage N et al. Synergistic increases in

PMID- 15630704

OWN - NLM

gaTaAT- Publisher

DA - 20050104

PUEM- Print-Electronic
I - 0894-1491

Der - 2005 Jan 3

Fig. 4.16. Parsing the PMID

We could use regular expressions to capture the PMID and other
information if all the MEDLINE records had the same standard format. A
few of these tags are not present wherever information is not available. For
example, sometimes the abstract is not available. In such cases the AB tag
is not present in the MEDLINE record which makes it a little more
difficult to construct a regular expression that is generic enough for all
cases. We demonstrate an alternate method that locates the position of
each start and end tag and captures everything in between. We will declare
the tags we will use to construct regular expressions at the beginning of the

program:

final
final
final
final
final
final
final
final
final
final
final

static
static
static
static
static
static
static
static
static
static
static

String
String
String
String
String
String
String
String
String
String
String

private
private
private
private
private
private
private
private
private
private
private

We will next create code for

pmidTag = "PMID- ";
pmidEndTag = "OWN - ";
titleStartTag = "TI - ";
titleEndTag = "PG - ";
abstractTag = "AB - ";
abstractEndTag = "AD -~ ";
fauthorStartTag = "FAU - ";
authorStartTag = "AU - ";
authorEndTag = "LA - ";
srcTag = "SO -";
medlineEndTag = "</pre>";

the method that we will call

getArticleInfo() for retrieving the information:

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 185

private StringBuffer getArticleInfo(StringBuffer tmp, int
pmidStart, int endMedline) ({
StringBuffer articleTmp = new StringBuffer();
String pmidl = tmp.substring(pmidStart +
pmidTag.length(), tmp.indexOf(pmidEndTagqg));

int titleStart = tmp.indexOf(titleStartTag);
int titleEnd = tmp.indexOf(titleEndTag);

if (titleEnd < 0 |] titleEnd > endMedline)
titleEnd = tmp.indexOf (abstractTag);

int abstractStart = tmp.indexOf(abstractTag);

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf(fauthorStartTag);

}

if (titleEnd < 0 |] titleEnd > endMedline) ({
titleEnd = tmp.indexOf(fauthorStartTag);

}

String title = null;

if (0 <= titleStart && titleStart < endMedline) {
titleStart += titleStartTag.length();
title = tmp.substring(titleStart,
titleEnd).replaceAll (" (\\s+)", " ");
}

int end = tmp.indexOf (abstractEndTag);
String tmpAbstractTag = abstractEndTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(fauthorStartTag);
tmpAbstractTag = fauthorStartTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf (authorEndTag);
tmpAbstractTag = authorStartTag;
}
}

String article = null;
if (abstractStart + tmpAbstractTag.length() <= end) {
article = tmp.substring(abstractStart +
tmpAbstractTag.length(), end).replaceAll(" (\\s+)", " ");

}

int authorStart = tmp.indexOf (authorStartTagqg);
String authors = null;

if (0 <= authorStart && authorStart < endMedline) {
authorStart += authorStartTag.length();

186

int authorEnd = tmp.indexOf (authorEndTag);
authors = tmp.substring(authorStart,

authorEnd) .replaceAll(authorStartTag, ",
").replaceAll(fauthorStartTag, ", ");

}

int srcStart = tmp.indexOf(srcTag);
String journal = null;
if (0 <= srcStart && srcStart < endMedline) {
journal = tmp.substring(srcStart + srcTag.length(),
endMedline);

}

// Let's create the document
articleTmp.append("<a href=\"" + PUBMED_ ARTICLE_LK +
pmidl + "\">" + pmidl + "").append("
");
articleTmp.append("<U>Journal</u>: ");
articleTmp.append(journal != null ? journal : "No
journal listed").append("
");
articleTmp.append("<u>Authors</u>: ");
articleTmp.append(authors != null ? authors : "No
authors listed").append("
"};
articleTmp.append("<u>Title</u>: ");
articleTmp.append(title != null ? title : "No
title").append("
");
articleTmp.append("<u>Abstract</u>: ");
articleTmp.append(article != null ? article : "No
article").append("
");
return articleTmp;

}

The output of the second version of the PubMed servlet program that
automatically parses the abstracts for each of the returned citations is
shown in Fig. 4.17. Each of the abstracts is marked at the beginning with
the PubMed ID which in turn is hyperlinked to the citation on PubMed if

the user wishes to see the original record at NCBI.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 187

[PubMed Serviet version 1.7 - Mazilla

- B ER Yew Go Qookmaks [ook Window el

gl QQ 0 Q [% hiap:jocsihost:5000jpmd 05-01-05-21 2852 arywords=HIV | (G Q‘.‘.‘o EIT._'Ii
[erves b | = Ptited St versn 1.2])
You have searched NCEI for the userleywords ‘HIV".

Articles found:

15630704

Journal GEa 2005 Jan 3,
Aushors: El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF
Title: Synergistic mereases in mntraceldar Ca(2+), and the release of MCP-1, RANTES, and IL-6 by astrocytes mmd with opsates and HIV-1 Tat
Abitract Rﬂmm:wwnﬂmnumtugwmwhnbwebem“ risk of CHS comph from buman o d wirus (HIV)
infection Cipeate druge may alter the path of HIV by directly modulating imnmee finction and by drectly modifying the CHS response to HIV.
Despate this, the mecharsms by which opiates merease the neuropathogeness of HIV are uncertain. In the present study, we describe the effect of morphine and the
HIV-1 protemn toxin Tat(1-72) on astroghsl function m cultures denved from ICK mice. Astroghs maintain the blood-brain harmer and mfluence nflammatory sgnabng in
the CNS. Astrocytes can express mus-opoid receptors, and are lkely targets for abused opsates, whach preferentially activate mu-opicad receptors, While Tat alane
desrupts astrocyte function, when comkbined with morphane, Tat causes synergistic increases in [Ca(2+))(1). Moreover, astrocyte cultures treated with morphne and Tat
showed exaggerated mcreases in chemakine release, including monocyte chemoattractant protein-1 (MCP-1) tndleg\d-ﬂ:d on activation, normal T cell expressed and
s:ueud(ﬂ.ANTES).alwelmamﬂ.edm i (IL-6). Morphine-Tat interactions were prevented by the antagomist bet: or

lizing Tat(1-72) or substituting a nostesdc, deletion mutant (Tat(Delta3dl-61)). Our Endings suwst that opdes ey merease the wulnerabaity of the CNS to
wiral entry (wia of phages) and ensung HIV mrp‘lmhx by Wmca‘ﬂy mereasing MCP-1 and RANTES release by astrocytes. The
results Further suggest that astrocytes are key diaries in opiate-HIV o and d m astroghal fimetion and nflamenatory signaling may contnbute to
an accelerated m HIV-nfected haals who abuse opiates. (c) 2004 Wiley-Liss, Inc

13630678

Joamal J Infect Dis 2005 Feb 1191 (Suppl 1):563-77.

Authors: Kaslow RA, Dorak, Teviik, Dorak T, Tang James Jasaring, Tang J1
Title: Influence of Host Genetic Variation en Susceptibity to HIV Type | Infection

Abatract For this review of genetic to huenan virus type | mfection, far more information was avadahle on factors mvolved in acqusition

nfﬂwwirushrmml’:cwd"wcipial'lha:myrwlwiwbyﬂuh&:ud'dwm'chui:warimiw iy alters ission from an infected host primandy by

neg\img... pl nfwmdﬂwr of particles k blood and d secretions of the potential donor. Thus, the effects of host genetic
a5 icably bound to the well-established and powerfil effects on virus load at different stages of mfection. Teasing apart the effects in both

mmmcwmhemmnﬂcmmhemﬁﬁc

15630469

Jourmal FLoS Med 2004 Dec;1{3ye64. Epub 2004 Dec 25.

Authors: Papasavvas E, Kostman JR, Mounzer K, Grant RM, Gross R, Gallo C, Azzord L, Foulkes A, Thiel B, Putlk M, Mackiewice A, Shull I, Montaner L)
domized Controlled Trial of Theram:. m Cheanac HIV. | Infrctinn

_m-m i Eens &=
Fig. 4.17. Displaying abstracts for matching PubMed articles

The complete code for the second version of PubMed servlet (version
1.2) is shown in in Listing 4.2.

Listing 4.2. PubMed Servlet version 1.2
package org.jfb.PubMed;

import org.apache.regexp.RE;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServlietRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.*;

import java.net.URL;

import java.net.URLEncoder;

import java.net.URLConnection;

import java.util.Properties;

public class PubMedServletl 2 extends HttpServlet {

private static final String TITLE = "PubMed Servlet
version 1.2";
private static final String KEYWORDS = "keywords";

private static final String PUBMED_ARTICLE_LK =

188

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrievesd
b=pubmed&dopt=Abstract&list_uids=";
private static final String citationString =

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieves&d
b=PubMed&dopt=medline&list_uids=";

private static final RE pmidRE = new RE("PMID: ([0-9]+)
\\{PubMed");

private static final String pmidTag = "PMID- ";

private static final String pmidEndTag = "OWN - ";
private static final String titleStartTag = "TI - ";
private static final String titleEndTag = "PG - ";
private static final String abstractTag = "AB - ";
private static final String abstractEndTag = "AD - ";
private static final String firstAuthorStartTag = "FAU -
1
private static final String authorStartTag = "AU - ";
private static final String authorEndTag = "LA - ";
private static final String srcTag = "SO -";
private static final String medlineEndTag = "</pre>";

protected void doGet (HttpServletRequest req,
HttpServletResponse res)
throws ServletException, IOException {
StringBuffer html = new
StringBuffer (createSearchForm());

// 1. Extract the user-supplied keywords
String userKeywords = getUserKeywords(req);
if (userKeywords != null) {
if (userKeywords.equals("")) {
String errorMes;
errorMes = "

ERROR
Please enter keywords to
search!

";
html.append(errorMes);
} else {
html.append("
<HR>
");
html.append("You have searched NCBI PubMed with the
keywords '" + userKeywords + "'.");

// 2. Retrieve the PubMed IDs from the user
// keywords
StringBuffer sbPmids = null; //sbpmids
final String searchURL =
"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10&db=
pubmed&cmd=search&term="
+ URLEncoder.encode(userKeywords, "UTF-8");

String errorMes = null;

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 189

try {
// if (true) throw new IOException("Testing the

connection failure here!");

sbPmids = getPmids(searchURL);

} catch (IOException ioe) {

ioe.printStackTrace();

errorMes = "

We are sorry,
the system could not establish connection to the NCBI PubMed
server "

+ "with the URL "" + searchURL + "".

Please try again later.

";

}

if (errorMes == null) {
if (sbPmids != null) {
String urlAddress = citationString +
URLEncoder.encode(sbPmids.toString(), "UTF-8");
StringBuffer abstracts = null;

// 3. Retrieve the abstracts from the PubMed
// 1IDs

try {
abstracts = getAbstracts(urlAddress);

} catch (IOException ioe) {
ioe.printStackTrace();
errorMes = "

We are
sorry, the system could not retrieve the abstracts using

keyword(s) ""
+ userKeywords + "" with the URL
<PRE>"" + urlAddress + ""<PRE>

";

}

if (errorMes == null) {
int pmidStart = abstracts.indexOf (pmidTag);
StringBuffer tmp = abstracts;
html.append("

Articles
found:

\n");
StringBuffer article;

// 4. Extract information from the articles
try {
while (pmidStart !
int endMedline =
tmp.indexOf (medlineEndTag) ;
article = getArticleInfo(tmp, pmidStart,

endMedline);
html.append(article);

tmp.delete(0, endMedline +
medlineEndTag.length());
pmidStart = tmp.indexOf(pmidTaqg);

if (pmidStart != -1) {

190

html.append("<HR>");

}
}

} catch (Exception e) {
e.printStackTrace();
errorMes = "

<h1>ERROR</h1>
We are sorry, the system could
not retrieve the articles for PMIDs <PRE>""
+ sbPmids + ""<PRE>

";
html.append(errorMes);
}
} else {
html.append(errorMes);
}

} else {
html.append("
No abstracts found!");

} else {
html.append(errorMes);
}
}
}

appendBuildProperty(html);
html.append("</BODY></HTML>\n");

// 5. Print the results
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.print(html);

}

private String getUserKeywords(HttpServletRequest req) {
return req.getParameter (KEYWORDS);

}

private StringBuffer createSearchForm() {
StringBuffer html=new StringBuffer();
html .append("<HTML>");
html.append("<HEAD><TITLE>" + TITLE +

"</TITLE></HEAD><BODY>");
html.append("Java for Bioinformatics: ");

html.append("<hl>" + TITLE +

"</hl>");
html.append("
Please enter a term to search

on NCBI PubMed:

\n"};

html.append("<FORM METHOD=GET>\n");
html.append("<INPUT TYPE=TEXT NAME=" + KEYWORDS +

">

\n");
html.append("<INPUT TYPE=SUBMIT VALUE=\"Search

PubMed\">
\n");

Facilitating PubMed Searches: JavaServer Pages and Java Serviets 191

html.append("</FORM>\n");
return html;

}

private StringBuffer getPmids(String searchURL) throws

IOException {

URLConnection urlConnection = new
URL (searchURL) .openConnection();

InputStream inputStream =
urlConnection.getInputStream();

BufferedReader reader = new BufferedReader(new
InputStreamReader (inputStream));

StringBuffer sbPmids = new StringBuffer();
String pmid;
String s = null;

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmid = pmidRE.getParen(1l);
sbPmids.append(pmid + ",");
}
}

reader.close();
final int length = sbPmids.length();

if (length > 0) {
sbPmids.delete(length - 1, length);
return sbPmids;
} else {
return null;
}
}

private StringBuffer getAbstracts(String urlAddress)
throws IOException {
BufferedReader citationReader =
new BufferedReader (new InputStreamReader (new
URL(urlAddress).openConnection().getInputStream()}));
StringBuffer abstracts = new StringBuffer();

String s;

while ((s = citationReader.readLine()) != null) {
abstracts.append(s);

}

return abstracts;

}

private StringBuffer getArticleInfo(StringBuffer tmp, int
pmidStart, int endMedline) {
StringBuffer articleTmp = new StringBuffer();
String pmidl = tmp.substring(pmidStart +
pmidTag.length(), tmp.indexOf(pmidEndTag));

192

int titleStart = tmp.indexOf(titleStartTag);
int titleEnd = tmp.indexOf(titleEndTag);

if (titleEnd < 0 || titleEnd > endMedline)
titleEnd = tmp.indexOf (abstractTag);

int abstractStart = tmp.indexOf(abstractTag);

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf (firstAuthorStartTag);

}
String title = null;

if (0 <= titleStart && titleStart < endMedline) ({
titleStart += titleStartTag.length();
title = tmp.substring(titleStart,

titleEnd).replaceAll("(\\s+)", " ");

}

int end = tmp.indexOf (abstractEndTag);
String tmpAbstractTag = abstractEndTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(firstAuthorStartTag);
tmpAbstractTag = firstAuthorStartTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(authorEndTag);
tmpAbstractTag = authorStartTag;
}
}

String article = null;
if (abstractStart + tmpAbstractTag.length() <= end)
article = tmp.substring(abstractStart +

tmpAbstractTag.length(), end).replaceRll("(\\s+)", " ");

authorEnd) .replaceAll(authorStartTag, ",

}

int authorStart = tmp.indexOf(authorStartTag);
String authors = null;

if (0 <= authorStart && authorStart < endMedline) {
authorStart += authorStartTag.length();
int authorEnd = tmp.indexOf(authorEndTag);
authors = tmp.substring(authorStart,

").replaceAll (firstAuthorStartTag, ", ");

}

int srecStart = tmp.indexOf (srcTag);
String journal = null;
if (0 <= srcStart && srcStart < endMedline) {

{

Facilitating PubMed Searches: JavaServer Pages and Java Serviets 193

journal = tmp.substring(srcStart + srcTag.length(),
endMedline);
}

// Let's create the document

articleTmp.append(”<a href=\"" + PUBMED ARTICLE LK +
pmidl + "\">" + pmidl + "").append("
");

articleTmp.append("<U>Journal</u>: ");

articleTmp.append(journal != null ? journal : "No
journal listed").append("
");

articleTmp.append("<u>Authors</u>: ");

articleTmp.append(authors != null ? authors : "No
authors listed").append("
");

articleTmp.append("<u>Title</u>: ");

articleTmp.append(title != null ? title : "No
title").append("
");

articleTmp.append("<u>Abstract</u>: ");

articleTmp.append(article != null ? article : "No
article").append("
");

return articleTmp;

}

private void appendBuildProperty(StringBuffer html) {
Properties buildInfo = null;

try {
buildInfo = new Properties();
InputStream buildStream =
getClass () .getClassLoader().getResourceAsStream(" /build-~

info.txt");
buildInfo.load(buildStream);

} catch (Throwable e) {
e.printStackTrace();

}

if (buildInfo != null) {
html.append("
<HR>Build #");
html.append(buildInfo.getProperty("buildNumber"));
html.append("\n");
}
}

public static void main(String[] args) throws Exception {
new PubMedServletl 2();

}
}

Highlighting Search Terms in Retrieved Abstracts

In version 1.3 of the PubMed servlet, we will enhance the usefulness of
the search results by highlighting the search terms in the retrieved

194

abstracts. One way to do this is to convert the search terms and the abstract
into lower case, locate the matches and then highlight the terms in the
abstract. In this method, we lose the case of the words in the original
abstract (because we converted that into lower case). To fix this, we could
find the exact location of the match and the length of the match and use the
original abstract to highlight the matching term(s).

Another way is to use the equalsIgnoreCase() method which
compares strings irrespective of case. For example, the following code will
find a match to the term "HIV" in text even if it contains HIV in different
forms such as hiv, Hiv, Hlv, hIV, etc.

if (word.equalsIgnoreCase("HIV")) {
//code for highlighting matching terms;
}

To use this method, we have to first create an array of words in the
abstract and test if any of the individual words match the search term.
However, there are limitations to this method also. The
equalsIgnoreCase () method searches for exact matches and will not find
words containing punctuation marks and other characters. If, for example,
HIV-1 is found at the end of a sentence, the array element will be "HIV."
(with a period) and "HIV" is not equal to "HIV.", To fix this we need to
get rid of all such punctuation marks and other special characters.

An easier method to circumvent these issues is described below. In this
method, we iterate over the text in the abstract highlighting each term as it
is found. The regular expression itself is of the type:

(ala) (b|B) (c|C)..

which will match any word irrespective of case. Surrounding such
expression in parentheses allows us to extract specific sub-strings from a
string based on a specified pattern. This is implemented in code as follows:

StringBuffer sb = new StringBuffer("(");
for (char c¢ : chars) {
char charUp Character.toUpperCase(c);
char charLo Character.tolLowerCase(c);

Hon

sb.append(" (") .append(charLo).append("|").append(charUp).appe
nd(")");

}

sb.append(")");

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 195

final String regex = """ + sb.toString() + "|["a-zA-Z]" +
sb.toString();

We will not only highlight the search term in the abstracts, we will also
color them differently for better visibility and readability. To do this, we
need to declare an array called COLOR of color elements to store the
selection of colors we wish to use:

private static final String[] COLOR = new String[]{"blue",
"#98cc02", "purple", "red", "#£7dc88"};

For each of the characters in the search term, a regular expression of the
type indicated above (with both lower and upper case forms) is created.
Next when the term is found in the article text, it is highlighted using a
different color for each matching term.

highlightedText = re.subst(highlightedText, "\\\\$0",
RE.REPLACE_BACKREFERENCES) ;
}

The complete code for the method which we will call highlight() is as
follows:

private String highlight (String articleText, Stringf]
terms) {
String highlightedText = new String(articleText);
for (int i1 = 0; i < terms.length; i++) {
final String term = terms[i];
final char[] chars = term.toCharArray();

// Here we are creating the regular expression to find any
// word irrespective of case.
StringBuffer sb = new StringBuffer("(");
for (char c¢ : chars) {
char charUp = Character.toUpperCase(c);
char charLo = Character.tolLowerCase(c);

sb.append("(").append(charLo).append("|").append(charUp).appe
nd(")");

}
sb.append(")");
final String regex = """ + sb.toString() +

"|["a-2A-Z]" + sb.toString();

// Replace the text by a HTML FONT tag that
// wraps the term found
RE re = new RE(regex);

196

highlightedText = re.subst(highlightedText,
"\\\\<font style=\"\\\\+2\" color=\"" + COLOR[i] +
"\">$0", RE.REPLACE_BACKREFERENCES);

}
return highlightedText;

}

The regular expression for highlighting matched text with colored text is
constructed using the Jakarta regular expression library. In particular we
are using the subst method (short for substring), which is defined as
follows:

re.subst(stringl, string2, rules)
where,

stringl: the String to make the substitution in
string2: String to substitute into stringl
rules: rules that define how substitutions are to be done in stringi

To refer to the contents of a parenthesized expression within a regular
expression, we use what are known as 'backreferences'. The first
backreference in a regular expression is denoted by \1, the second by \2
and so on.

The rules are set as follows:

REPLACE_FIRSTONLY: replace only the first occurrence of the
regular expression in string1

REPLACE_ALL: replace all occurrences of the regular expression in
string]

REPLACE_BACKREFERENCES: all backreferences will be
processed, which in this case means that all matched patterns within the
article text will be replaced with string2

In our case,

stringl = highlightedText

string2 = "W\<font style=\"\\+2\" color=\"" + COLOR[i] +
"\">$0"

and

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 197

rules = REREPLACE_BACKREFERENCES

The extra backslashes in string2 are escape characters. Note that the
expression “$0” represents the whole match, which in this case, represent
the search term(s). The output of PubMed servlet version 1.3 obtained
from an ANDed search of the terms HIV AND AIDS is shown in Fig. 4.18.

¥ PubMed Serviet 1_30 - Mozilla

- Ble Edt Yew Go fochmarks Jooks Window Help

" Q O Q Q [% hpifocatust:600jpma_05-01-21-21334 Phaywords=HIV AND-HAIDS | [Cysearch | C:':(o
15657048
Joumal: Eur J Inmwmol 2005 Fan 18:.
Authors: Stewart-Tones GB, di Glena E. Kolluberger 8, McMichael AT, Jones EY, Bowness P
Title: Crystal stchwes and EIRIDLL recogmtion of three don viral peptides complexed to HLA-B*2705,
Abstract: We have solved the crystal structures of three HLA-B'2705-peptide plexes with the domn viral peptides: EBV
EBNA3C 258-266 (RRIYDLIEL), influenza (flu) nucleoproten NP383-391 (SRYWAIRTR), and HIV gag 264-273 (KRWIILGLNE).
+ o 1on dunng HIV mfection has been ted with pr 1on by HLA-B*2705, and T cell recogmtion, of the
lnvhh mnu\uodmmlaut ERWILGLNE peptide. The tight lydrogen-bonding network observed between the HLA-B*2705 B-pocket and
the peptide P2 argmine guanadinnum anchor explams why mutation of this residue during HIV mfection results i loss of pepfide binding.
escape and progression to Promanent, solvent-exposed structures within these peptides may participate m ting T cell [
P to these don pitopes. In the HLA-B'2705 complex with flu NP383- 391, the aniino acid side chans of residues
7 and 8 are solvent-exposed whulst . i the HIV decamer, the mam-cham bulges mto the solvent around P7. Thus, HLA-B'27035
pre:cll.h- vwral pephides m a range of conf 1ons. Tetr 1 plexes of HLA-B*2705 wath the HIV and flu but not EBV peptides
bound stronghy to the Jaller-Tg-like ptor (EIR)3DL1. Substtution of EBV P8 gl to tl e allowed stion by EIR3DLL.
In the HLA-B*2705-EBV structure the P8 glhitamate sude chiam s sobvent- ::qmscd and may mlubit KIR3DL1 Innllmg thwough
lectrostatic forces. See panying C tary: luttp://cbe. doiorg/10. 1002 /eji. 200425875,

- =

15657945

Jowmal: Eur J Inmwmol 2005 Fan 18:.

Authors: de Castro JA

Title: HLA-B27: portrayi donunant viral

Abstract: A.III.\ough the cn rystal structure of HLA-B27 has been known for a long tune. only recently have Xeray diffraction studies of this

molecule m complex with individual peptides become avalable. The report of three such structhres mvohimg viral epitopes that are

wumunodominant i HLA-B27- 1T cell resp agamst mfl Epstem-Barr and HIV viruses sigfic antly maproves our

percephion of entical aspects of the i logical and patl tic roles of HLA-B27, nlcllldulz (1) the molecular basis of its

pephde-bmding specificity aud ho\\ tlus 15 modulated Ir} mbh‘pc polymorph {2} the relationslup between the structural and the
hgeme features of o t viral epitopes. (3} lhc Inﬂs for long term non-progression to of HIV-infected HLA-B27(+)

mdnviduals, and (4) the structural features of nucrobial pepti 1g NE receptor engagement. Here, I discuss the unplications of

this and related studies for the relevance of HLA-B27 in host defense and as 2 pathogenetic molecule m spondyloarthritis See

accompanymg article: bittp://de doiorg/10.1002/ep 200425724,

E
F

Fig. 4.18. Highlighting search terms in PubMed abstracts

As the output shows, both keywords have been highlighted (blue and
green respectively, as specified in the array of HTML colors).

The complete code for PubMed servlet version 1.3 is shown in Listing
4.3.

Listing 4.3. PubMed Servlet version 1.3
package org.jfb.PubMed;

import org.apache.regexp.RE;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

198

import javax.servlet.http.HttpServletResponse;
import java.io.¥*;

import java.net.URL;

import java.net.URLEncoder;

import java.util.Properties;

public class PubMedServletl 3 extends HttpServlet {
private static final String TITLE = "PubMed Servlet
1.30";
private static final String KEYWORDS = "keywords";
private static final String PUBMED_ARTICLE LK =

"http://www.ncbi.nlm.nih.gov/entrez/query. fcgi?cmd=Retrievesad
b=pubmed&dopt=Abstract&list uids=";
private static final String citString =

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieves&d
b=PubMed&dopt=medline&list_uids=";

private static final RE pmidRE = new RE("PMID: ([0-91]+)
\\[PubMed");

private static final String pmidTag = "PMID- ";

private static final String pmidEndTag = "OWN - ";
private static final String titleStartTag = "TI - ";
private static final String titleEndTag = "PG - ";
private static final String abstractTag = "AB - ";
private static final String abstractEndTag = "AD - ";
private static final String firstAuthorStartTag = "FAU
- 7
private static final String authorStartTag = "AU - ";
private static final String authorEndTag = "LA - ";
private static final String srcTag = "SO -";
private static final String medlineEndTag = "</pre>";

private static final String[] COLOR = new
String[]{"blue", "#98cc02", "purple", "red", "#£7dc88"};
private String[] params;

protected void doGet (HttpServletRequest req,
HttpServletResponse res) throws ServletException, IOException

{
StringBuffer html = new StringBuffer();

// 1. Retrieve the user supplied keywords
printHeader (html);
String userKeywords = req.getParameter (KEYWORDS);

if (userKeywords != null) {
params =
userKeywords.replaceAll({"\\s*(\\+| ((a|2) (Njn)(D|d)) | ((o]0O) (|
R)))\\s*", " ").split(" ");

html.append("
<HR>
");
html.append("You have searched NCBI for the

userKeywords

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 199

+ highlight(userKeywords, this.params)
ERY

// 2. Retrieve the PubMed IDs from abstracts
// matching user supplied keywords.
StringBuffer sbPmids = null;
final String spec =
"http://www.ncbi.nlm.nih.gov/entrez/query. fcgi?dispmax=10&db=
pubmed&cmd=search&term="
+ URLEncoder.encode(userKeywords, "UTF-

8");
String errorMes = null;
System.out.println("spec = " + spec);
try {

sbPmids = getPmids (spec);
} catch (IOException ioe) {
ioe.printStackTrace();
errorMes = "

We are
sorry, the system could not retrieve the PubMed IDs using
keyword(s) ""
+ userKeywords + "" with the
URL <PRE>"" + spec + ""<PRE>

";
}

if (errorMes == null) {
if (sbPmids != null) {
String urlAddress = citString +
URLEncoder .encode(sbPmids.toString(), "UTF-8");
StringBuffer abstracts = null;

// 3. Retrieve abstracts corresponding
// to the PubMed IDs
try {
abstracts =
getAbstracts (urlAddress);
} catch (IOException ioce) ({
ioe.printStackTrace();
errorMes = "

We are sorry, the system could not retrieve the
abstracts using keyword(s) ""
+ userKeywords + ""
with the URL <PRE>"" + urlAddress +
"" ; <PRE>

";
}

if (errorMes == null) {
int pmidStart =
abstracts.indexOf (pmidTag) ;
StringBuffer tmp = abstracts;
html.append("

Articles
found:

\n");
StringBuffer article;

200

// 4. Formatt the articles

try {
while (pmidStart 1= -1) {
int endMedline =
tmp.indexOf (medlineEndTag) ;
article = getArticle(tmp,
pmidsStart, endMedline);
html.append(article);
tmp.delete(0, endMedline +
medlineEndTag.length());
pmidStart =
tmp. indexOf (pmidTag) ;
if (pmidstart != -1) {
html.append("<HR>");
}
}

} catch (Exception e) {
e.printStackTrace();
errorMes = "

<font

color=red><h1>ERROR</h1>
We are sorry, the system could
not retrieve the articles for PMIDs <PRE>""
+ sbPmids +
"" ; <PRE>

";
html.append(errorMes);
}

} else {
html.append(errorMes);
}
} else {
html.append("
No abstracts found!");
}
} else {

html.append(errorMes);
}
}

appendBuildProperty(html);
html.append("</BODY></HTML>\n");

// 5. Print the results
res.setContentType ("text/html");
PrintWriter out = res.getWriter();
out.print(html);

}

private void printHeader (StringBuffer html) {
html.append("<HTML>");
html.append("<HEAD><TITLE>" + TITLE +
"</TITLE></HEAD><BODY>\n");

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 201

html.append("<hl>" + TITLE +
"</h1l>\n");

html.append("Please enter a userKeywords to
search on NCBI:

\n");

html.append("<FORM METHOD=GET>\n");

html.append("<INPUT TYPE=TEXT NAME=" + KEYWORDS +
">

\n");

html.append("<INPUT TYPE=SUBMIT VALUE=\"Search
PubMed\ ">
\n");

html.append("</FORM>\n");

}

private StringBuffer getPmids(String spec) throws
IOException {

BufferedReader reader = new BufferedReader (new
InputStreamReader (new
URL(spec).openConnection().getInputStream()));

StringBuffer sbPmids = new StringBuffer();

String pmid;

String s = null;

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmid = pmidRE.getParen(l);
sbPmids.append(pmid + ",");
}
}

reader.close();
final int length = sbPmids.length();

if (length > 0) {
sbPmids.delete(length - 1, length);
return sbPmids;
} else {
return null;
}
}

private StringBuffer getAbstracts(String urlAddress)
throws IOException {
BufferedReader citReader =
new BufferedReader (new
InputStreamReader (new
URL(urlAddress).openConnection().getInputStream()));
StringBuffer absSb = new StringBuffer();

String s;

while ((s = citReader.readLine()) != null) {
absSb.append(s);

}

return absSb;

202

private StringBuffer getArticle(StringBuffer tmp, int
pmidStart, int endMedline) {
StringBuffer articleTmp = new StringBuffer();
String pmidl = tmp.substring(pmidStart +
pmidTag.length(), tmp.indexOf(pmidEndTag));

int titleStart = tmp.indexOf(titleStartTag);
int titleEnd = tmp.indexOf(titleEndTag);

if (titleEnd < 0 || titleEnd > endMedline)
titleEnd = tmp.indexOf (abstractTag);

int abstractStart = tmp.indexOf(abstractTag);

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf (firstAuthorStartTag);

}

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf(firstAuthorStartTag);

}
String title

null;

if (0 <= titleStart && titleStart < endMedline) {
titleStart += titleStartTag.length();
title = tmp.substring(titleStart,
titleEnd).replaceAll (" (\\s+)", " ");
}

int end = tmp.indexOf(abstractEndTag);
String tmpAbstractTag = abstractEndTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(firstAuthorStartTag);
tmpAbstractTag = firstAuthorStartTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf (authorEndTag);
tmpAbstractTag = authorStartTag;

}

String article = null;
if (abstractStart + tmpAbstractTag.length() <= end)

{
article = tmp.substring(abstractStart +
tmpAbstractTag.length(), end).replaceAll(" (\\s+)", " ");
}

int authorStart = tmp.indexOf(authorStartTag);
String authors = null;

if (0 <= authorStart && authorStart < endMedline) {

Facilitating PubMed Scarches: JavaServer Pages and Java Servlets

203

authorStart += authorStartTag.length();

int authorEnd = tmp.indexOf(authorEndTag);

authors = tmp.substring(authorStart,
authorEnd) .replaceAll (authorStartTag, ",
").replaceAll (firstAuthorStartTag, ", "):

}

int srcStart = tmp.indexOf (srcTag);
String journal = null;
if (0 <= srcStart && srcStart < endMedline) {
journal = tmp.substring(srcStart +
srcTag.length(), endMedline);
}

// Create the output

articleTmp.append("<a href=\"" + PUBMED_ARTICLE_LK

+ pmidl + "\">" + pmidl + "").append("
");
articleTmp.append("<U>Journal</u>: ");
articleTmp.append(journal != null ? journal

journal listed").append("
");
articleTmp.append("<u>Authors</u>: ");
articleTmp.append(authors != null ? authors

authors listed").append("
");
articleTmp.append("<u>Title</u>: ");

"No

"No

articleTmp.append(title != null ? highlight(title,

params) : "No title").append("
");
articleTmp.append("<u>Abstract</u>: ");
articleTmp.append(article != null ?
highlight(article, params) : "No article”").append("
");

return articleTmp;

}

private String highlight(String articleText, String[]

terms) {

String highlightedText = new String(articleText);

for (int i = 0; i < terms.length; it++) {
final String term = terms[i];
final char[] chars = term.toCharArray();

// Create the regular expression to find search terms
// irrespective of case

StringBuffer sb = new StringBuffer("(");
for (char c : chars) {
char charUp = Character.toUpperCase(c);
char charLo = Character.toLowerCase(c);

sb.append(" (") .append(charLo).append(”|").append(charUp).appe
nd(")");

}

sb.append(")");

final String regex = """ + sb.toString() +

"|["a-2A-Z]" + sb.toString();

204

// Replace the text by a HTML FONT tag
// that wraps the term found
RE re = new RE(regex);
highlightedText = re.subst(highlightedText,
"\\\\<font style=\"\\\\+2\" color=\"" + COLOR[i] +
"\">$0",
RE.REPLACE_BACKREFERENCES) ;

}
return highlightedText;

}

In this Chapter, we have attempted to demonstrate how web applications
can be created using the J2EE JSP and servlets technology based on a
literature search and retrieval service that is indispensable for today’s fast
paced scientific research environment. In particular, we created a web
application that provides the same powerful search capabilities provided
by the NCBI PubMed server but further enhanced it by displaying the
abstracts for each of the matching articles right up front and highlighting
the search terms in the abstract. The rationale behind this strategy was that
researchers may find it difficult to recognize the relevance of an article to
their area of research simply by looking at the article title. If the abstract
was displayed and the search terms were highlight and color coded, it
becomes much easier to understand the context in which the abstract is
relevant vis-a-vis the input search terms. This design saves the researcher a
few extra clicks and makes data more readable and useful.

Note: This Chapter uses resources referred to in the Appendix:
Setting up Apache ant and Apache Tomcat.

Summary

The ability to query and mine the rich scientists datasets in PubMed is a
powerful way to further experimental science using a hypothesis driven
research methodology where researchers build on scientific findings
reported by scores of researchers around the world. In this Chapter, we
have demonstrated how to create a web application with Java Serviet/JSP
technology to access PubMed data and how to enhance the functionality
provided by the resource. Processing and presentation of biomedical data
in ways that provide additional benefit for the researcher is a fundamental
contribution of information technologies and it is hoped that this Chapter
has illustrated a small example of how this can be accomplished.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 205

Questions and Exercises

1. Visit the NCBI PubMed website and become familiar with the
service. Try out searches with different keywords and view the
results using the various available Display (Brief, Abstract,
Citation, XML, etc.), Sort by (Pub Date, First Author, Last
Author, etc.) and Limits (Dates, Type of Article, etc.) options.
Think of ways you can enhance the capabilities of the service from
the user’s point-of-view.

2. PubMed abstracts are a powerful source of data on protein-protein
interaction networks. For example, two or more proteins
mentioned in the same sentence within an abstract most likely
interact with or are related to one another in some fashion.
Enhance the PubMed web application we created in the Chapter
by:

a. highlighting gene/protein names mentioned in the abstract
b. hyperlinking protein names to an appropriate annotation
resource or database on the web

One such solution can be based on the use of gene symbols defined by
the HUGO Gene Nomenclature Committee (HGNC). According to HGNC
convention, human gene symbols are designated by upper-case Latin
letters or by a combination of upper-case letters and Arabic numerals, with
some exceptions. For example, the Approved Gene Symbol for the breast
cancer 1, early onset gene is BRCAL.

For the second part of the exercise, the NCBI Entrez Gene resource can
be used as an annotation resource. The link to the BRCA1 gene on Entrez
Gene, for example, is identified by the following URL:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve
&dopt=full_report&list_uids=672

3. Enhance the user interface of the web application to include the
capability to:
a. save selected abstracts on your local machine
b. filter articles by special criteria, for example, limit journals
by name (Science, Nature, etc.)

206

Additional Resources

* The Apache Software Foundation - http://tomcat.apache.org

* The Apache Jakarta Project - http://jakarta.apache.org/regexp/
* The Apache Ant Project - http://ant.apache.org/

* Entrez - http://www.ncbi.nlm.nih.gov/Database/index.html

* HUGO Gene Nomenclature Committee -
http://www.gene.ucl.ac.uk/nomenclature/

* Java Servlet API Specification 2.2 -
http://java.sun.com/products/serviet/download.html

* JavaServer Pages[tm] Technology - White Paper -
http://java.sun.com/products/jsp/whitepaper.html

* The Java Servlet API White Paper -
http://java.sun.com/products/servlet/whitepaper.htmi

* Java Servlet Technology -
http://java.sun.com/products/servlet/index.jsp

* PubMed Help website -
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helppubmed.chapter.p
ubmedhelp

e RFC2616 - http://www.w3.org/Protocols/rfc2616/rfc2616.html

* RFC 3875 - http://www.rfc-archive.org/getrfc.php?rfc=3875

Selected Reading

The HUGO Gene Nomenclature Database, 2006 updates. Eyre TA,
Ducluzeau F, Sneddon TP, Povey S, Bruford EA and Lush MJ. Nucleic
Acids Res. 2006 Jan 1;34(Database issue):1D319-21.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 207

Guidelines for human gene nomenclature (1997). HUGO Nomenclature
Committee. White JA, McAlpine PJ, Antonarakis S, Cann H, Eppig JT,
Frazer K, Frezal J, Lancet D, Nahmias J, Pearson P, Peters J, Scott A,
Scott H, Spurr N, Talbot C Jr, Povey S. Genomics. 1997 Oct 15;45(2):468-
71.

Chapter V

Creating a Gene Prediction and BLAST Analysis
Pipeline

Introduction

Gene prediction and gene annotation are fundamental aspects of
genome-sequencing projects and discovery research. These activities
involve determination of complete gene structures from the raw DNA
sequence and attributing functions to them, by way of computational
methods, at least as a first step. These methods try to implement an
understanding of the way in which the structural elements such as coding,
non-coding and regulatory elements are organized within genes, to extract
meaningful information from raw nucleotide sequences.

Gene prediction programs, specifically, are designed to recognize
genetic signals that are embedded in DNA sequences to make predictions
about gene structure. We will explore gene prediction programs in more
detail in this Chapter and build an analytic pipeline that will tie gene
prediction and the BLAST application we built in earlier Chapters.

Gene Prediction Programs

Gene prediction methods that rely only on information that is encoded
in the sequence itself to make predictions are called ab initio (Latin: from

210

the beginning) methods. These methods use signals within DNA such as
splice sites, start and stop codons, promoters and terminators of
transcription, polyadenylation sites, ribosomal binding sites, CpG islands,
and various transcription factor binding sites to predict the presence of
exons. ab initio methods such as Genscan rely on probabilistic models
known as Hidden Markov models (HMMs) to discern patterns within
DNA. An HMM models the different states that a DNA sequence can exist
in and the transition probabilities between the states. The different states of
DNA are the ones enumerated above such as promoter, intron, exon etc.
The term ‘Hidden’ comes from the fact that the sequence itself is visible
but the states are hidden.

DNA Transcription and Translation

Although a detailed treatment of these subjects are out of the scope of
this book, an introduction of the basic concepts in essential to understand
the biology and behavior of the DNA and RNA. We had mentioned the
terms transcription and translation in the last section. Transcription is the
process by which a DNA molecule is copied into an RNA molecule, while
translation is the process by which the RNA sequence is used by the
cellular machinery to synthesize proteins.

Transcription may result in one of three types of RNA: Messenger RNA
(mRNA), transfer RNAs (tRNA) or ribosomal RNA (rfRNA). mRNA
molecules serve as ‘messengers’ that specify the code for the synthesis of
amino acids (during translation) and therefore the name messenger RNA.
tRNAs form covalent attachments to individual amino acids and recognize
the encoded sequences of the mRNAs to allow correct insertion of amino
acids into the elongating polypeptide chain during translation. IRNAs are
assembled together with numerous proteins to form complexes known as
ribosomes. Ribosomes engage mRNAs and form a catalytic domain into
which the tRNAs enter with their attached amino acids. The proteins of the
ribosomes catalyze all of the functions of polypeptide synthesis.

During the process of transcription, the DNA double helix unwinds and
one strand serves as the template for the synthesis of the RNA strand.
Either strand can serve as the template - which strand becomes the
template depends on a combination of transcription initiation and
termination signals such as promoter and enhancer sequences that are
present on the DNA. Transcription is actually a polymerization reaction in

Creating a Gene Prediction and BLAST Analysis Pipeline 211

which individual nucleotides are linked together by an enzymatic reaction
(catalyzed by the enzyme RNA polymerase) into a chain to form RNA.

In nature, these processes are orchestrated in a finely tuned and
regulated manner involving an intricate interplay of a large number of
proteins, which recognize specific signals and patterns on the sequences
they bind. An example is what are known as CpG islands, which are
regions within DNA that often occur near the beginning of genes, where
the frequency of the dinucleotide CG (that is, the nucleotide bases cytosine
and guanine) is more than in the rest of the genome

We had also mentioned exons and introns and these are simply terms
used to refer to regions of DNA that code for or don’t code for proteins
respectively. To elaborate, higher organisms (eukaryotes) have what are
called “split genes”, that is, a large proportion of their genes are not
continuous linear entities, but instead may be interrupted throughout their
length by sequences that do not code for protein. A piece of DNA may
therefore contain coding sequences with intervening non-coding
sequences. The intervening non-coding segments are called the introns and
do not code for protein. The coding sequences are exons and do code for
protein. For example, the Cystic Fibrosis transmembrane regulator (CFTR)
gene's coding regions (exons) are scattered over 250,000 base pairs of
genomic DNA and is made up of 27 exons. During transcription, introns
are removed from the CFTR gene and exons are pieced together by a
process known as RNA splicing to form a 6100-bp mRNA transcript that is
translated into the 1480 amino acid sequence (the CFTR protein). In
contrast, the 384 nucleotide human pancreatic ribonuclease gene is
intronless and codes for a 128 amino acid protein. A highly schematic
view of the RNA splicing process is show in Fig. 5.1.

212

Intron Intron Intron Intron

Exon 1 l Exon 2 l Exon 3 J, Exon 4 + Exon 5 Exon 27

Genomic DNA 1 2 3 4 5 27 |
RNA
splicing
v
Nuclear RNA 1 2 3 4 6] 27
A 4 ¥ » ¥ ¥
mRNA 1 2 3 4 5 27

Fig. 5.1: Schematic of RNA splicing

Gene Prediction with Genscan

Genscan is one of the most effective among the many exon prediction
programs to date. In this Chapter, we will build an application that will
allow users to perform Genscan-based predictions on an unknown piece of
DNA and analyze the predicted genes and peptides with BLAST using the
SwingBlast application that we wrote earlier. The rationale to combine the
two programs into this pipeline is simple — once we know that a newly
sequenced stretch of DNA probably contains potential coding regions, we
would like to know what peptides they may code for and what functions
they perform. As we learned in Chapter 2, a BLASTX analysis of a
nucleotide sequence, for example, compares a nucleotide query sequence
translated in all reading frames against a protein sequence database and
produces matches to known proteins. This information in turn provides
clues to the probable function of an unknown peptide sequence. The
integrated Genscan and BLAST pipeline can be used to perform such
functional characterization of newly sequenced DNA fragments.

Genscan was written by Chris Burge and Samuel Karlin at the
Department of Mathematics, Stanford University. Genscan utilizes the
same basic signals described earlier to build complete gene structures (that
is, introns + exons) from human genomic sequences. Specifically, these
include transcriptional, translational and splicing signals (including
elements present in most eukaryotic promoters such as the TATA box and

Creating a Gene Prediction and BLAST Analysis Pipeline 213

cap site), as well as length distributions and compositional features of
exons, introns and intergenic regions. Importantly, Genscan also makes
use of the many substantial differences in gene density and structure based
on GC composition of the human genome. For example, it is known that
gene density in GC rich regions is five times higher than in regions with
moderate GC content and ten times higher in rich AT rich regions. Four
categories of DNA were identified based on their GC content:

1.<43% GC
2.43-51% GC
3.51-57% GC
4.>57% GC

These are known as isochores. Thus, if the input genomic sequence has
a GC content of 45 % it is said to have an isochore value of 2. ab initio
programs traditionally have been poor at predicting genes in regions
containing multiple genes, especially when present on both DNA strands.
Genscan addresses these problems by using an explicitly double-stranded
genomic sequence model, which has the likelihood of genes occurring on
both DNA strands. Second, while most programs assume the presence of
exactly one complete gene in the input sequence, Genscan treats the more
general case in which the sequence may contain a partial gene, a complete
gene, multiple complete (or partial) genes on either strand, or no gene at
all. A significant difference in Genscan also is the incorporation of splice
donor signal information based on the mechanism of donor splice site
recognition in pre-mRNA sequences by Ul small nuclear
ribonucleoprotein particle (Ul snRNP).

Running Genscan Analyses

Running and interpreting a Genscan analysis is rather straightforward.
Point your browser to the Genscan server at MIT:
http://genes.mit.edu/GENSCAN.html (Fig. 5.2). For this exercise we will
use a 175 kilobase human bacterial artificial chromosome (BAC) with the
accession number AC092818 from NCBI. Genscan has been ‘trained’ to
work with vertebrate, arabidopsis and maize sequences (Fig. 5.3). Since we
are analyzing a human BAC, we choose the vertebrate option. We will use
the default sub-optimal exon cut-off value of 1 for our purposes. This
value defines the threshold, which determines if exons that do not meet the
criteria (sub-optimal exons) will be shown or not.

214

You can give a sequence name if you are analyzing a large number of
sequences and want to label each output by a unique identifier. In this case,
we will just use the BAC accession number (Fig. 5.4). The program gives
an option to print out the predicted proteins or the predicted proteins along
with their nucleotide sequences. We will choose the latter option (Fig. 5.5).

2] A7 Wi Srrvrs 511 - Seznalt ikt Explre

The New GENSCAN Web Server at MIT

Identification of complete gene structures in genomic DNA

=
For information about Genscan, click here

-t for predicting the locations and exon-intron structures of genes in

B v

mumbers ignored):

esnumbers ignored):

To have the results mailed Lo you, enter your ema

[Genscan | oot |

Fig. 5.3. Setting Genscan parameters

Creating a Gene Prediction and BLAST Analysis Pipeline 215

The sequence can be either uploaded or pasted directly in the text box.
Uploading a sequence is more convenient if you are handling very large
sequences, as is the case here (Fig. 5.5). Finally, you can specify an email
address if you want to receive the results via email. We will hit the “Run
Genscan” button and just wait to see the results in the browser. Fig. 5.6 and
Fig. 5.7 show the results of the Genscan analysis.

Analyzing GenScan Output

The GenScan header gives information on the input sequence and the
parameters used such as name, size and isochore classification
(categorization based on GC content) of the sequence, and the matrix used
for the analysis (HumanIso.smat). The body of the analysis consists of the
predicted peptide and the corresponding CDS sequences. As is evident
from the output there were eight predicted peptides in this sequence. The
complete gene structure of each peptide is listed after the header (Table
5.1).

=il x|
De (% Yow Fpoim Dok teb end o
meks)+ x) (F]] e e e G - LR B @R ey ™
{7 e —— ey 8=

LT TR Frocictod poptdes only

Upl 0 A sequence file (one-letter code, upper or lower case, spaces/numbers ignored):

Or paste your DNA sequence here (one-letter code, upper or lower cas ces/mumbers ignored);

To have the results mailed to you, enter your email address here (optional). NG
s,

=) YTy

Fig. 5.4. Entering an identifier

216

Table 5.1. Gene structures

Date run: 16-May-105

FPar:

Predicted genesg/exons:

Type S .Begin ...End .Len Fr Ph IfAc Do/T CodRg

3609 3682
3826 3904
9758 9904
10302 10435
12763 12979
15363 15421
18293 18483
26161 26237
27474 27479

Init
Intr
Intr
Intr
Intr
Intr
Intr
Term
PlyA

MANNRENEEN
MANNEND =N

:
1.
155
1.
1.
1.
1.
1.
1.

O I S

PlyA 27633 27628
Term 48266 47967
Init 49500 45009
Prom 50548 50509

RN NN

52752 52791
54566 54649
59721 59785
67507 67704
68259 68338
68461 68595
73137 73264
73438 73443

Prom
Init
Intr
Intr
Intr
Intr
Term
PlyA

WWwwwwww
T T

The most important aspects f this table are the gene and exon number,
the type of exon, the strand information (+/-), the background and end
positions, the length of each exon in basepairs, the frame and the scores.
The key to the abbreviations is provided at the end of the output (Table
5.2).

Creating a Gene Prediction and BLAST Analysis Pipeline 217

Table 5.2. Abbreviations and explanations

iGn.Ex |gene number, exon number (for reference)

Type [Init = Initial exon (ATG to 5' splice site)

Intr = Internal exon (3' splice site to 5' splice site)

[Term = Terminal exon (3' splice site to stop codon)

Sngl = Single-exon gene (ATG to stop)

Prom = Promoter (TATA box / initation site)

PlyA = poly-A signal (consensus: AATAAA)

S IDNA strand (+ = input strand; - = opposite strand)

Begin |beginning of exon or signal (numbered on input strand)

End jend point of exon or signal (numbered on input strand)

Len length of exon or signal (bp)

Fr reading frame (a forward strand codon ending at x has frame x mod 3)
Ph net phase of exon (exon length modulo 3)

I/Ac [initiation signal or 3' splice site score (tenth bit units)

Do/T [5' splice site or termination signal score (tenth bit units)
CodRg [coding region score (tenth bit units)

P robability of exon (sum over all parses containing exon)
[T'scr jexon score (depends on length, I/Ac, Do/T and CodRg scores)

Each pair of peptide and CDSs (as shown below for the first set) are in
Fasta format and have unique identifiers where the sequences are
numbered sequentially.

>gi|GENSCAN_predicted_peptide_1|325_aa
MALISFTSPFNFIGKKSWQCITEAGFDKVDETIIFVISQSSRNVIVGEFLQDPCQGLPL

KDLSSKQAANLFPWQRMEAVACDILLIMQPGHGQPAFLQGMSSRLSGAAEQVGSWSMRS
RHSLLWSVPEPVQQAGFLFPEALQSAGCFLPSNIGLOVLQFWTLGLTSVVCQGLSGLWP
IEGCTVGFSTFEVLGLGLASLLLSLQTAYCGTSPCDHSSSLSDSKAAVLENIGLLPLTH
SECSRGGTQTGISGLKTELGAKVARVCQAEYGGESHAEREFWTPTEESLRVYKRGLISS
SGISVDHGSLPEGLTKTFIPEGYEP

>gi|GENSCAN predicted CDS_1|978 bp

atggccctaatcagttttacatctecgtttaattttattggaaagaagagectggcaatge
atcacagaggccggcectttgacaaagtggatgaaacaattatcttcgttatcagecaaage
agtagaaatgtgatagttggggaatttttgcaggacccatgeccagggcttacectetgeta
aaggatttgtcctcaaagcaggcagcaaatctgtteccecttggcagaggatggaageegtg
gettgtgacattcectectgataatgecagecaggeccacgggecagecagecatttetgecagggg
atgagctccaggctcagtggggcagcagagcaagtggggagetggtecatgaggagtcag
cgtcattccttgetgtggtetgttecetgaaccagtccaacaggectggecttectgttecca
gaagccctccaaagtgetggatgettecectgecatecgaacattggactccaagttettecag
ttttggactcttggacttacatcagtggtttgecagggactetcaggectttggectecag

218

attgaaggctgcactgtcecggcttectectacttttgaggttttgggacteggactggettece
ttgctectcagettgecagacagectattgtgggacttcaccttgtgatcattccagecage
ctttcggattccaaagecggetgtecctggaaaatatagggectecctteccactaaccecaccte
tctgaatgcagcagaggtggaacccagacagggatcagtgggttaaagacagagetggga
gccaaggtagccagagtttgeccaggcagagtatggeggagagagecacgcagagagagaa
ttctggacacctacggaggaatctcttcgagtatataaaagaggactgatcagcagtgea
tcaggtatctctgttgatcatggttctttacccgaaggactgactaaaacctttatteet
gaagggtatgaaccatag

S etter code, upper or lower case, spaces/umbers ignored):

A sequence here (one-letter code, uppe wer cise, spaces numbers ignoredy:

=
To have the results mailed to you, enter your email address here (optional): RGN

) the |

i D st

Fig. 5.5. Printing peptides and the corresponding coding sequences (CDS)

e VA Weh Serers ot ST M r ! Dofrenet Qaplevrs

equersce file (one-letter code, upper or lower case, spaces/numbers ignored).
Erowsn

{A sequence here (one-lett e, upper or lower case, spaces/numbers ignored):

To have the results mailed to you, enter your email address here (optional):

Fig. 5.6. Uploading the BAC sequence

Creating a Gene Prediction and BLAST Analysis Pipeline 219

[i et et et ol Linlx
th (& bon Fyves ne b Sfed e |
) | D] s e B[AR e *

s [] e fgmrs. it echuf et aown o el

Fh I/Ac Do/T CodRg

3609
3826
9758
10302
12763

113 48
100 33
134 z 101
4 63
97 78
95 106
29 127
57 - 105

BRSO R

Fig. 5.7. Genscan output: Header information

2 covsci ot st e breres I
Be fde Yew Fgoites Jook el iSond I
O - O - 1) (2] (| Plmed oreenw @ B35 0H- R B o
| Actdress. L8] hexp: figens. m exdufegi-band g arwn £ 8w

Predicted peptide sequence(s):

] Dera [} D Interee

Fig. 5.8. Genscan output: predicted sequences

220

Creating SwingGenscan

The swingGenScan application is composed of four packages as
described below:

* org.jfb.genscan: contains the Genscan API that provides a framework
for a Genscan implementation. It makes the implementation
more flexible by allowing us to optimize, thread, or queue requests and
perform other manipulations without having to change the whole
application; the way the implementation works is transparent to the
application.

* org.jfb.jgenscan: a Genscan implementation of the framework
defined by the org. jfb.genscan package.

* org.jfb.util: contains classes for performing operations such as
extracting the peptide and genes from a Genscan prediction.

* org.jfb.swinggenscan: contains all the classes to build the
SwingGenScan application.

* GenScanResult: contains the parsed peptide and the gene predictions.

* ResultDialog: a JDialog window that displays the result of Genscan
operation. In this window, users can select one or more sequences to
place into the BLAST pipeline using swingBlast.

* SwingGenScan: the main application window where users can select the
parameters for running a Genscan prediction against a chosen nucleotide
sequence

The goal of this Chapter is to create a gene prediction and annotation
pipeline which enables a user to perform gene prediction followed by
further downstream analysis of the predicted gene and peptide sequences
using BLAST. SwingGenScan uses SwingBlast to send Genscan predicted
sequences for BLAST analysis. To enable this, we have modified
SwingBlast version 2.5 that we created in Chapter 3 and separated the
functionality provided by that application into four packages that we will
use in SwingGenScan:

* org.jfb.blast: provides the BLAST API
* org.jfb.jgblast: provides an implementation of the BLAST API
* org.jfb.util: contains classes that provide functions that can be

shared by more than one application (to enable future code reuse). For
instance, the class QueryHelper in this package contains two methods

Creating a Gene Prediction and BLAST Analysis Pipeline 221

(sendQuery and postQuery) to send GET or POST HTTP requests and
the HTML result back.

* org.jfb.swingblast3: is the new refactored SwingBlast application.
Since this is a major change, we have named this version 3.

The four classes can be packaged into a jar file called swingblast.jar.
The jar file can serve as a library whose functionality can be used like any
other Java library by placing it in the Java classpath. The structure of the
SwingGenScan application is shown in Fig. 5.9.

SwingGenScan

L sre
L org
jfb

I— genscan
GenScan.java
GenScanException.java
GenScanManager.java

— jgenscan
JGenScan

—— swinggenscan
GenScanResult
ResultDialog

L SwingGenScan
— util

Fig. 5.9. The SwingGenScan application structure

Writing the Code for SwingGenScan

The org.jfb.genscan package contains the following Java classes:
GenScan. java

GenScanException.java, and

222

GenScanManager.java

As described earlier, this package contains the API that provides a
framework for a Genscan implementation. Let’s look at the code for the
first Java class Genscan located in the file Genscan.java (Listing 5.1).

Listing 5.1. Code for Java class GenScan

package org.jfb.genscan;

import java.util.HashMap;
import java.util.Observable;

public abstract class GenScan extends Observable {
public abstract Object submitQuery(Map parameters)
throws GenScanException;

public abstract Object requestResult(Object identifier)
throws GenScanException,
IllegalArgumentException;

}

When we run a Genscan analysis, we would like to know the status of
the Genscan operation - has the request been submitted and if so, is the
sequence currently in process, or has it encountered an error? The Genscan
class provides a simple way of being notified of events through the use of
the observer pattern as described in Chapter 2.

Next we define the GenScanManager class, whose purpose is to provide
an instance of GenScan (Listing 5.2). As we'll see later, an implementation
of the GenScan API will call the GenScanManager’s register method to
register itself as the default GenScan implementation.

Remember, we don’t want to modify our code if we change the
GenScan implementation to provide a multi-threaded, queued and multi-
server implementation in the future. So to load our GenScan
implementation we just pass the full name of the Java class to load,
through the JVM system property (defined as “genscanClass.driver”) using
the —-D option as explained earlier in Chapter 3. Another way is to call
Class.forName (“full name of the Java class”) to have the Java
classloader locate the implementation and load it into the JVM. The reader
will notice that the createGenScan() is thread safe, which means that a
different instance of the Java Genscan implementation will be loaded for

Creating a Gene Prediction and BLAST Analysis Pipeline 223

each thread and therefore it will not be a problem while accessing shared
resources. For the same reason, multiple Genscan analyses can be run in a
multi-threaded application. To return an instance of the implementation of
GenScan we then use the Java reflection API (defined in java.lang.reflect
package) to retrieve the constructor and create a new object of the
GenScan implementation here called JgensScan.

Listing 5.2. GenScanManager.Java

package org.jfb.genscan;

public class GenScanManager {
private static String genscanClass null;
private static boolean initialized = false;

il

public static synchronized void register(GenScan
genscan) {
genscanClass = genscan.getClass().getName();
initialized = true;

}
private static void loadInitialDrivers() {
final String driver =
System.getProperty("genscanClass.driver");
if (driver == null)
return;
try {

System.out.println("GenScanManager.Initialize:
+ driver);
Class.forName(driver);
} catch (Exception e) {
System.out.println("GenScanManager.Initialize:
load failed: " + e);
}

loading

}

public static GenScan createGenScan() throws
GenScanException {
if (!initialized) {
initialized = true;
loadInitialDrivers();
}
if (genscanClass == null)
throw new GenScanException("There is no driver
configured! "
+ "Please use genscanClass.driver Java
property or Class.forName" +
" to load the driver class.");

try {

224

// In a multi thread environment we need to
//make sure that the class is loaded

final Class aClass = (Class)
Class.forName(genscanClass, true,

Thread.currentThread().getContextClassLoader());
return (GenScan) aClass.getConstructor (new
Class[]1{}).newInstance(new Object[]1{});
} catch (Exception e) {
throw new GenScanException(e);

}

Next, we need to be able to get an instance of GenScan, or more
specifically, an instance of the implementation that fulfills our Java
GenScan declaration requirements. The design of the GenScan framework
provided by the API we wrote is to make the implementation transparent
to the user. For example, the implementation uses an HTTP server to run
the Genscan analysis and to retrieve the result. This entire process is
shielded from the user. The user simply calls the submitQuery method
with a Map of parameters and requests a result using an object identifier.

The code below loads the class for the Genscan implementation:

(Class aClass = (Class) Class.forName(genscanClass, true,

Thread.currentThread().getContextClassLoader());
return (GenScan) aClass.getConstructor(new
Class{]}{}).newInstance(new Object[]{});

We use Java reflection 1o retrieve a class instance of the class defined
by the name genscanClass by calling the static method forName from
class class and we cast it to class. Then we use the class instance we
retrieved to construct an instance of that class by calling the
getConstructor method that we cast also to type GenScan. Casting an
object means forcing the object to be of a certain Java type. Of course, the
type one wants to cast an object into must be one that the object inherits
from. The new type can be an interface, an abstract class or a super class
type. Casting is done in Java by putting the new type in parentheses before
the object as shown above.

Note the static method in GenScanManager.Java:

Creating a Gene Prediction and BLAST Analysis Pipeline 225

public static synchronized void register(GenScan genscan) {
genscanClass = genscan.getClass().getName();
initialized = true;

}

This method allows any implementation to register itself to the
GensScanManager by calling it with an instance of an implementation of
GenScan in a static statement. The method just stores the full Java class
name of the implementation of Genscan by using Java reflection
(getclass() method) on an object. The name will be then used by the
createGenScan() method to provide an instance of GenScan.

Finally, the GenscanException class handles any exceptions that may
arise during the operation of Genscan (Listing 5.3).

226

Listing 5.3. GenScanException class

package org.jfb.genscan;

public class GenScanException extends Exception {
public GenScanException() {

}

public GenScanException(String message) {
super (message) ;

}
public GenScanException(String message, Throwable
cause) {
super (message, cause);
}

public GenScanException(Throwable cause) {
super(cause);

}

Next we implement Genscan as shown in Listing 5.4. In the JGenScan
class, the register () method is called by createGenScan() in case no
Java class name for any implementation has been provided. Next the
method loadInitialDrivers() will attempt to first retrieve the full Java
class name of the implementation by looking at a JVM system property
passed through the JVM as argument using the —D option as explained
before:

java —DgenscanClass.driver=org.jfb.jgenscan.JgenScan

The line above will define in the system the property
genscanClass.driver with the value org.jfb. jgenscan.JgenScan. We
get the system property back in the Java code like this:

System.getProperty('"genscanClass.driver"”);

If the value found is not null, the method will then attempt to load the
class through a class method call - class.forName (). If JGenScan is not
in the Java classpath, then the Java classloader will fail to load the class
and will throw a ClassNotFoundException. So it is important to make
sure that you declare JGenScan in the Java classpath. The method
forName () has the effect of initializing the class implementing GenScan.
Part of the initialization is to run the static statements and set up the static
fields or constants.

Creating a Gene Prediction and BLAST Analysis Pipeline 227

Listing 5.4. The JGenScan class

package org.jfb.Jjgenscan;

import org.jfb.genscan.GenScan;

import org.jfb.genscan.GenScanException;
import org.jfb.genscan.GenScanManager;
import org.jfb.util.QueryHelper;

import java.io.UnsupportedEncodingException;
import java.net.URLEncoder;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashMap;

public class JGenScan extends GenScan {
private static final String GENSCAN_HOSTNAME =
"genes.mit.edu";
private static final String GENSCAN PATH = "/cgi-
bin/oldgenscanw.cgi”;
private static final int GENSCAN_PORT = 80;

private static final String GENSCAN URL = “http://" +
GENSCAN_HOSTNAME + ":" + GENSCAN_PORT + "/" + GENSCAN_PATH;
static {
System.out.println("Registering " +

JGenScan.class);
GenScanManager.register(new JGenScan());

}
private static Map reqIdToResultFileName = new
HashMap();
private Collection currentRunningGenScan = new
ArrayList();
private static final int NUMBER_OF_SECOND = 3000;
public Object submitQuery(Map parameters) throws
GenScanException {
final String urlapiQuery =
createUrlapiQuery(parameters);
setChanged();

notifyObservers("Submitting the job to the server
with query\n" + urlapiQuery);
Runnable runnable = new Runnable() {
public void run() {
Object res;
try {
res =
QueryHelper.sendQuery(urlapiQuery, GENSCAN_URL, true);
} catch (Throwable e) {
res = new GenScanException("Problem
with URL " + GENSCAN URL, e);

228

}
final String key = "" + this.hashCode();

synchronized (reqIdToResultFileName) {
System.out.println("Storing the result
Y
reqIdToResultFileName.put (key, res);

}
}
}i
new Thread(runnable).start();
final String key = "" + runnable.hashCode();

currentRunningGenScan. add(key);
return key;

}

public Object requestResult(Object identifier) throws
GenScanException {
if (!currentRunningGenScan.contains(identifier))
throw new IllegalArgumentException(identifier +
" has no corresponding result!");
Map tmp = null;
boolean hasFinished = false;
int ct = 0;
synchronized (this) {
while (!hasFinished) {
tmp = new HashMap(reqIdToResultFileName);
hasFinished = tmp.containsKey(identifier);
if (hasFinished) {

reqgIdToResultFileName.remove (identifier);

break;
}
setChanged();
notifyObservers("Waiting " +
NUMBER_OF_SECOND
+ " seconds before re-trying (total
waiting time: "
+ (ct += NUMBER OF SECOND) +
"s).");
try {
wait (NUMBER_OF SECOND);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
final Object o = tmp.get(identifier);
if (o == null) return null;
if (o instanceof Throwable)
throw new GenScanException ("Embedded
exception", (Throwable) 0);
return o;

}

Creating a Gene Prediction and BLAST Analysis Pipeline 229

private String createUrlapiQuery(Map parameters) {
StringBuffer query = new StringBuffer();
try {
final Object org = parameters.get("organism");
final Object nam = parameters.get("name");

final Object sub =
parameters.get("subOptExonCutoff");
final Object dis =

parameters.get("displayOption");
query.append(" -
s=") .append(URLEncoder.encode((String)
parameters.get("sequence"), "UTF-8"));
if (org != null) {
query.append(" &~

o=").append(URLEncoder.encode((String) org, "UTF-8"));
if (nam != null) {
query.append (" &-
n=").append(URLEncoder.encode((String) nam, "UTF-8"));

if (sub != null) {
query.append (" &-
e=").append(URLEncoder.encode((String) sub, "UTF-8"));

if (dis != null) {
query.append (" &-
p=") .append(URLEncoder.encode((String) dis, "UTF-8"));
}

} catch (UnsupportedEncodingException uee) {
uee.printStackTrace();

}

return query.toString();

Note the following piece of code in Listing 5.4:

new Thread(runnable).start();

final String key = "" + runnable.hashCode();
currentRunningGenScan.add(key);

return key;

Here, we are threading the process to be able to run more than one query
without having to wait for the first one to finish. Also because we’re
running in ¢ multi-threaded environment we want to synchronize the Map
called reqidToResultFileName, to safely save the right key with the right

230

result and to avoid more than one thread to modify the Map at the same
time that could potentially populate the Map with wrong data.

After we have submitted the query, we retrieve the result by calling the
requestResult () method. That method will return only when the result is
available. One has to make sure that a call to that method is not executed
in the event-dispatching thread, because that will block the repaint of the
application.

The method requestResult () described in Listing 5.4 first checks that
the request identifier is a valid argument. If invalid, the method will throw
an exception that would allow us to track down multiple calls to the
method with the same argument that could probably imply an infinite loop.
We are protecting multiple threads from accessing the same block when
we are checking if the request is ready, by surrounding the block with a
synchronized () block. The synchronization is on the current object “this”
calling that method. That means that the JVM will set a lock (a unique
token) on the current object to the thread that first entered the block. Then,
until the thread inside that block releases the lock, any other threads
waiting to run that piece of code will have to wait for the lock to be
released. The actual processes are transparent to the developer because of
the use of the synchronized Java keyword.

The result of the Genscan operation is stored in the GenScanResult
object. This is essentially the predicted peptide and gene sequences and
any additional data about the search that the user may wish to save such as
the name of the server, the Genscan parameters used for the prediction as
well as the time taken to execute the prediction etc. The code for the
GenScanResult class is shown in Listing 5.5.

Creating a Gene Prediction and BLAST Analysis Pipeline 231

Listing 5.5. GenScanResult.Java

package org.jfb.swinggenscan;

public class GenScanResult {
private String[] peptideGene = null;

public void setPeptideAndGene(String[] pepGene) {
peptideGene = pepGene;
}

public String{] getPeptideGene() {
return peptideGene;

}

Next, the ResultDialog class takes a GenScanResult object and
displays its content.

public void showResult(GenScanResult result) {
String[] pepGene = result.getPeptideGene();
if (pepGene == null) {
list.setCellRenderer (new
DefaultListCellRenderer());

list.setListData(new String[]{"No Results
Found"});
} else {
list.setCellRenderer (new MyListCellRenderer());
list.setListData(pepGene);
}
}

The ResultDialog class also allows the user to run additional
analyses to be run on the predicted gene and peptide sequences. In this
case, we will add a functionality to perform a BLAST search on user
selected Genscan predictions. To do that, we add a check box against each
predicted sequence and a button called "Run Blast" at the bottom. Once
the user selects a sequence and hits the "Run BLAST" button, the
SswingBlast application we created earlier is invoked with the selected
sequences in the text area of the swingBlast application.

runBlastButton = new JButton("Run Blast");
runBlastButton.addActionListener (new
ActionListener() {
public void actionPerformed(ActionEvent e) {
if (!list.isSelectionEmpty()) {

SwingBlast3.launch(list.getSelectedValues()[0].toString());

232

The code for the Resultbialog class is shown in Listing 5.6.

Listing 5.6. ResultDialog.java

package org.jfb.swinggenscan;

import org.jfb.swingblast3.SwingBlast3;

import javax.swing.*;

import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;
import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ResultDialog extends JDialog {
private static final Dimension BD_PREF_SIZE
Dimension(530, 460);
private JList list;
private JButton runBlastButton;

public ResultDialog(Frame owner)
HeadlessException {
super (owner) ;
setTitle("GenScan Result Dialog");
}

public void init() {
list = new JList();

= new

throws

list.setSelectionMode (ListSelectionModel.SINGLE_SELECTION);

list.addListSelectionListener (new
ListSelectionListener() {

public void valueChanged(ListSelectionEvent e)

{
if (!e.getValueIsAdjusting()) {

runBlastButton.setEnabled(!list.isSelectionEmpty());
}
}
Y

JScrollPane scrollPaneArea = new JScrollPane(list);
scrollPaneArea.setPreferredSize(new Dimension(500,

400));
JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());

panel.add(scrollPaneArea, BorderLayout.NORTH);

JPanel buttonPane = new JPanel();

buttonPane.setLayout (new BoxLayout (buttonPane,

Creating a Gene Prediction and BLAST Analysis Pipeline 233

BoxLayout.LINE_ AXIS));
buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea (new

Dimension(10, 0)));

runBlastButton = new JButton("Run Blast");
runBlastButton.addActionListener (new
ActionListener () {
public void actionPerformed(ActionEvent e) {
if (!list.isSelectionEmpty()) {

SwingBlast3.launch(list.getSelectedvalues()[0].toString());
}
}
)i

runBlastButton.setSize(new Dimension(80, 20));
runBlastButton.setEnabled(false);
buttonPane.add(runBlastButton);
panel.add(runBlastButton, BorderLayout.SOUTH);
getContentPane() .add(panel);
setSize(BD PREF SIZE);

setVisible(true);

}

public void showResult(GenScanResult result) {
String[] pepGene = result.getPeptideGene();
if (pepGene == null) {
list.setCellRenderer (new
DefaultListCellRenderer());

list.setListData(new String[]{"No Results
Found"});
} else {
list.setCellRenderer (new MyListCellRenderer());
list.setListData(pepGene);
}
}

private static «c¢lass MyListCellRenderer implements
ListCellRenderer {
public Component getListCellRendererComponent (JList
list, final Object value, int index, boolean isSelected,
boolean cellHasFocus) {
JPanel jPanel = new JPanel();
jPanel.setLayout (new BorderLayout());
final JTextArea textArea
JTextArea(value.toString());
final Font sf = textArea.getFont();
Font f = new Font("Monospaced"”, sf.getStyle(),
sf.getSize());
textArea.setFont(£f);
textArea.setLineWrap(true);
final JCheckBox comp = new JCheckBox();

new

234

comp.setSelected(isSelected);
jPanel.add(comp, BorderLayout.WEST);
jPanel.add(textArea, BorderLayout.CENTER);
return jPanel;

The SwingGenScan User Interface

The application interface is created using swing libraries. Listing 5.7
shows the code for the SwingGensScan application.

Listing 5.7. SwingGenScan user interface

package org.Jjfb.swinggenscan;

import org.jfb.genscan.GenScan;

import org.jfb.genscan.GenScanException;
import org.jfb.genscan.GenScanManager;
import org.jfb.util.Helper;

import javax.swing.*;

import javax.swing.event.DocumentEvent;
import javax.swing.event.DocumentListener;
import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;
import java.util.HashMap;

import java.util.Observable;

import java.util.Observer;

public class SwingGenScan extends JFrame {
private static final String APP_NAME = "SwingGenScan';
private static final String APP_VERSION = "Version
1.0";
private static final String STATUS_LABEL = "Status: ";
private static final String STATUS READY = "Ready";

fl

private static final Dimension LABEL_ PREFERRED_SIZE
new Dimension(127, 16);

private static final Dimension COMBO_PREFERRED SIZE
new Dimension(60, 25);

private static final Dimension CP_PREF _SIZE = new
Dimension(450, 410);

private static final String[] ORGANISMS =
new String[}]{"Vertebrate", "Arabidopsis",

Creating a Gene Prediction and BLLAST Analysis Pipeline 235

"Maize"};
private static final String[] PRINT_OPTIONS =
new String[]{"Predicted peptides
"Predicted CDS and peptides"};
private static final
SUBOPTIMAL_ EXON_CUTOFF_VALUES =
new String[]{"1l.00", "0.50", "0.25",
"0.05", "0.02", "0.01"};

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;
private JLabel statuslLabel;

private JLabel statusText;

private JComboBox organisms;
private JComboBox printOptions;
private JComboBox exonCutoffs;

private JButton clearBtn, submitBtn;

private JMenultem aboutItem;
private JMenultem quitItem;

public SwingGenScan() {
super();
seqFormInit();

}

private void seqFormInit() {
setTitle (APP NAME);

only",
String[]

"0.10",

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

newContentPane = new JPanel();
newContentPane.setOpaque(true);

newContentPane.setLayout (new BorderLayout());

getContentPane().add({newContentPane)
setContentPane(newContentPane) ;

// Create the menu bar
JMenuBar menu = new JMenuBar();

JMenu swingBlastMenu = new JMenu(APP_NAME);

quitItem = new JMenultem("Quit");
swingBlastMenu.add(quitItem);
menu.add(swingBlastMenu);

JMenu helpMenu = new JMenu("Help");
aboutItem = new JMenuItem("About");
helpMenu.add(aboutItem);

menu.add (helpMenu);

setJMenuBar (menu) ;

236

// Create the sequence pane

JPanel sequencePanel = new JPanel();

JLabel sequence = new JLabel("Sequence");

sequenceArea = new JTextArea();

final Font sf = sequenceArea.getFont();

Font f = new Font("Monospaced", sf.getStyle(),
sf.getSize());

sequenceArea.setFont (£f);

sequenceArea.setLineWrap(true);

scrollPaneArea = new JScrollPane(sequenceArea);

scrollPaneArea.setPreferredSize(new Dimension(300,
200));

sequencePanel.setLayout (new
BoxLayout (sequencePanel, BoxLayout.LINE AXIS));
sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new
Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder (BorderFactory.createEmptyBorder (10,
0, 10, 0));

statusLabel = new JLabel (STATUS_LABEL);

statusLabel.setPreferredSize (new Dimension(50,
30));

statusText = new JLabel(STATUS_READY);

JPanel statusPanel = new JPanel();
statusPanel.setBorder(BorderFactory.createEmptyBorder (0, 5,
5, 5));

statusPanel.setLayout(new BorderLayout());
statusPanel.add(statusLabel, BorderLayout.WEST);
statusPanel.add(statusText, BorderLayout.CENTER);

// Lay out the buttons from left to right

JPanel buttonPane = new JPanel();
submitBtn = new JButton("Submit");
clearBtn = new JButton("Clear");

buttonPane.setLayout (new BoxLayout (buttonPane,
BoxLayout.LINE AXIS));

buttonPane.add(Box.createHorizontalGlue());

buttonPane.add(Box.createRigidArea(new
Dimension(10, 0)));

buttonPane.add(clearBtn);

buttonPane.add(submitBtn);

JPanel jPanel = new JPanel();

jPanel.setLayout (new BorderLayout());

jPanel.setBorder (BorderFactory.createEmptyBorder(0,
10, 10, 10));

Creating a Gene Prediction and BLAST Analysis Pipeline 237

jPanel.add(sequencePanel, BorderLayout.NORTH);
jPanel.add(createProgramPanel(),

BorderLayout .CENTER) ;
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.add(statusPanel,

BorderLayout .SOUTH) ;
newContentPane.setPreferredSize(CP_PREF_SIZE);
enableFunctions(false);

// Display the window
pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
setLocation((screenSize.width - CP_PREF_SIZE.width)

/2,

(screenSize.height - CP_PREF_SIZE.height) /

2);
setVisible(true);
addListeners();

}

private JPanel createProgramPanel() {
JPanel organismPanel = new JPanel();
JLabel organismLabel = new JLabel("Organism");

organismLabel.setPreferredSize (LABEL_PREFERRED SIZE);
organisms = new JComboBoOx(ORGANISMS);
organisms.setMaximumSize (COMBO_PREFERRED SIZE);
organismPanel.setLayout (new

BoxLayout (organismPanel, BoxLayout.LINE_AXIS));
organismPanel.add(organismLabel);
organismPanel.add(Box.createRigidArea(new

Dimension(10, 0)));
organismPanel.add(organisms);
organismPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
organismPanel.add(Box.createHorizontalGlue());

JPanel exonCutoffPanel = new JPanel();
JLabel exonCutofflabel = new JLabel("Suboptimal
Exon Cuttoff");

exonCutofflLabel.setPreferredSize (LABEL_PREFERRED_SIZE);
exonCutoffs = new

JComboBox (SUBOPTIMAL_EXON_CUTOFF_VALUES) ;
exonCutoffs.setMaximumSize (COMBO_PREFERRED_SIZE);
exonCutoffPanel.setLayout (new

BoxLayout (exonCutoffPanel, BoxLayout.LINE_AXIS));
exonCutoffPanel.add(exonCutoffLabel);
exonCutoffPanel.add(Box.createRigidArea(new

Dimension(10, 0)));
exonCutoffPanel.add(exonCutoffs);

238

exonCutoffPanel.add(Box.createRigidArea(new
Dimension(5, 0)));
exonCutoffPanel.add(Box.createHorizontalGlue());

JPanel printOptionsPanel = new JPanel();
JLabel printOptionsLabel = new JLabel("Print
Options");

printOptionsLabel.setPreferredSize (LABEL PREFERRED_SIZE);
printOptions = new JComboBox(PRINT OPTIONS);
printOptions.setMaximumSize (COMBO_PREFERRED_SIZE);
printOptionsPanel.setLayout (new

BoxLayout (printOptionsPanel, BoxLayout.LINE_AXIS));
printOptionsPanel.add(printOptionsLabel);
printOptionsPanel.add(Box.createRigidArea (new

Dimension(10, 0)});
printOptionsPanel.add(printOptions);
printOptionsPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
printOptionsPanel.add(Box.createHorizontalGlue());

JPanel paramPanel = new JPanel();
paramPanel.setLayout (new BoxLayout (paramPanel,
BoxLayout.PAGE_AXIS));

paramPanel.add(organismPanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,
5)));

paramPanel.add(exonCutoffPanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,
S5)))i

paramPanel.add(printOptionsPanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,

5)))i

return paramPanel;

}

private void addListeners() {
quitItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.exit(0);
}
}yi

aboutItem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(org.jfb.swinggenscan.SwingGenSc
an.this, APP_NAME + " " + APP_VERSION,
"About " + APP_NAME,
JOptionPane.INFORMATION MESSAGE);
}

Creating a Gene Prediction and BLAST Analysis Pipeline 239

)i

clearBtn.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent e) {
sequenceArea.setText("");
enableFunctions(false);
statusText.setText (STATUS _READY);

)i

submitBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

Runnable runnable = new Runnable() {
public void run() {
GenScan genScan = null;

try {
Class.forName("org.jfb.jgenscan.JGenScan");
genScan =
GenScanManager.createGenScan();
} catch (ClassNotFoundException

cnfe) {
cnfe.printStackTrace();
} catch (GenScanException gse) {
gse.printStackTrace();
}
Map param = new HashMap();
param.put("sequence”,
sequencelArea.getText ());
param.put("organism",
organisms.getSelectedItem());
param.put("subOptExonCutoff",
exonCutoffs.getSelectedItem());
param.put("displayOption”,
printOptions.getSelectedItem());
Object requestIdentifier = null;
try | ,
requestIdentifier =
genScan.submitQuery(param);
} catch (GenScanException gse) {
gse.printStackTrace();

}

Observer observer = new Observer()
{
public void update(Observable
o, Object arg) {

SwingGenScan.this.statusText.setText (arg.toString());
}
};
genScan.addObserver (observer);
Object text = null;

240

try {
text =
genScan.requestResult(requestIdentifier);
} catch (GenScanException gse) {
gse.printStackTrace();
}
final GenScanResult result
Helper.extractPeptideAndGene(text.toString());
EventQueue.invokelater (new

i

Runnable() {
public void run() {

statusText.setText (STATUS_READY);
final ResultDialog
resultDialog = new ResultDialog(SwingGenScan.this);
resultDialog.init();

resultDialog.showResult(result);
}
i
}
}i
new Thread(runnable).start();
} .
})i

sequenceArea.getDocument () .addDocumentListener (new

DocumentListener () {
public void insertUpdate(DocumentEvent e) {

enableFunctions (sequenceArea.getText().trim().length() > 0);

}

public void removeUpdate (DocumentEvent e) {

enableFunctions(sequenceArea.getText ().trim().length() > 0);

}

public void changedUpdate(DocumentEvent e) {

}
)i

private void enableFunctions(boolean enabled) {
organisms.setEnabled(enabled);
exonCutoffs.setEnabled(enabled);
printOptions.setEnabled(enabled);

}

public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable() {
public void run() {

Creating a Gene Prediction and BLAST Analysis Pipeline 241

new SwingGenScan();
})i
}

The swingGenscan user interface is shown in Fig. 5.10.

= SwingGenScan
SwingGenScan Help

Sequence

LA

Organism Vertebrate ~
Suboptimal Exon Cut... | 1.00 ¥ |
Print Options | Predicted CDS and peptides ¥

Clear Submit

Status: Ready

Fig. 5.10. SwingGenScan user interface

After the Genscan prediction has finished, we need to parse the raw
results, which are presented as an HTML page to extract the actual
predicted gene and peptide sequences. This is done through the Helper
class within the org.jfb.util package. We have created a separate
package for this to enable developers to use this code in a different
application that requires similar functionality without the need to extract it
from the main application or block of code (Listing 5.8).

Listing 5.8. org.jfb.util package

package org.jfb.util;

import org.jfb.swinggenscan.GenScanResult;

242

import java.util.ArrayList;
import Jjava.util.Collection;

public class Helper {

public static GenScanResult
extractPeptideAndGene(String rawHtml) {
final String begin = "Predicted peptide
sequence(s):";
final String end = "Explanation";
String allSequences =
rawHtml.substring(rawHtml.indexOf (begin) + begin.length(),

rawHtml.indexOf (end));
if (allSequences.indexOf("NO PEPTIDES PREDICTED") >

0) {
return new GenScanResult();
}
int beginIndex = allSequences.indexOf('>');
allSequences = allSequences.substring(beginIndex +

1, allSequences.length());
beginIndex = allSequences.indexOf('>");
allSequences = allSequences.substring(beginIndex,
allSequences.length());
final String[] results = allSequences.split("\n");
Collection sequences = new ArrayList();
StringBuffer sb = new StringBuffer();
for (int i = 0; i < results.length; i++) {
final String line = results[i];
if (line.trim().length() == 0) {
sequences.add(sb.toString());
sb = new StringBuffer();
} else {
sb.append(line).append("\n");
}
}

sequences.add(sb.toString());

String[] res = new String[sequences.size()];
sequences.toArray(res);

final GenScanResult result = new GenScanResult();
result.setPeptideAndGene(res);

return result;

Running SwingGenScan

Fig. 5.11 to Fig. 5.14 demonstrate a typical run of the swingGenscan
application beginning with the pasting of a sequence — in this case — the
complete sequence of the human chromosome number 8 (GI number
24850538) and the printing of the predicted genes and peptides.

Creating a Gene Prediction and BLLAST Analysis Pipeline

243

= SwingGenScan

SwingGenScan Help

1124850538 | gb |ACO92818. 4| Homo sepiens chromoscpe 8, clome RPLL-419C2~
3, complete sequence
GAATTCTGTATTCCACATTTTTTTCTGACTCCAGTTCCAGAATCCACATATTTGTGTTTCTGGCTCCAGT
TCTAACAGTCAAGGC GTGTCAGTGTGTGATGAGTGTGCAGCAACTGTCCC T
GAGRAACACCCAGTAGGACTCTTTAAGGACARGCARAGTATCTTCTTCATCTTCACATTCCCTCCTGRCC
Sequence AGTACATTGCTAAGACTTAAAGCTTTCATTTGTTAACTCARTARTARARGTTTGTTTCTCTTTAKAGCAT
TGCTAGCCATGAGGCTTCCAGGTATTCTTGCTGEGATGAATCCTTTTATTTTAGATATTTTCTTCCCTAA
GCTTGTTCTTTICTTTCTTTTTAGATGAGGC CATCTTTTATTCACATAGTAAGAGC GGGATTGGAATAGA

CTGCCACCTCCATTTGAGCATCATTGCT GAG
GCAATGGACTCCATCCCAGTCTGTTTTCTGCAGGAGCAGGTTCAMGGTAAGTATAATTTTCTTAATGAGG
ATCTGARTAATGAACATCTTCCACCCATCCTGTTTCTCTTAAGGAGC CATGCAGGCCGCAGGCCCTTGAT

Organism [vertebrate ~
Suboptimal Exon Cut...

Print Options | CDS and -

_ Clear | Submit_|

Status: Ready

Fig. 5.11. Running SwingGenScan

= GenScan Result Dialog,

>gi | GENSCAN_predicted peptide_l|325_aa |~
MALISFTSPFNFIGEKSWQCITEAGFDEVDETIIFVISQSSENVIVGEFLODPCOGLPLL
KDLSSKQAANLFPWORMEAVACDILLIMQPGHGQPAFLQGHSSRLSGAAEQVGSWSHRSQ
RHSLLWSVPEPVQQAGFLFPEALQSAGCFLPSNIGLOVLOFWTLGLTSVVCOGLSGLWPQ
IEGCTVGFSTFEVLGLGLASLLLSLQTAYCGTSPCDHSSSLEDSKAAVLENIGLLPLTHL
SECSRGGTITGISGLETELGARKVARVCOAEYGGE SHAEREFWTPTEE SLEVYFRGLISSA
SGISVDHGSLPEGLTETFIPEGYEF

>gi | GENSCAN_predicted_CD5_1|978_bp

oy gtre gtttaattttat gy g

agt agt catgccagggcttacctotgota
ol gRagteyty
JeLLgLyacatLCtCCLyataatyCageCayyCCaACyYYCaAyCCaAyCatttotyCagyyy
atgagctocagy gLyygYCcayCaAyayCaArtYgYAYCLYY gagyagtcag
Ccgtcattocctigotgtygtotgt |) gyctggcttcctgttccca
gaagcoctocasagtgotgyatgottoctyocatogaacattggactocaagttottoag
[[] trtrggactettggacttacatcagtyytttgccagygactetcagycctitygectoay

at o L v L oy oy b oy oy tee

aaggattigrec goagcasatctytice gg

) g Jyeay! g JLggy yLgalLa’ yay!

cLLtogy: goggctygtoctygy g o} CCAcCte

totgaatgcageagagytyyaacccagacagyy grogy gacagagctggga
agayt CJ ggcagagratggcggagagagccacgcagagagag

ttotgy T ttogagtat o gcagtgca

Run Blast

Fig. 5.12. SwingGenScan results

244

The "rRun Blast" button remains disabled as long as no sequence is
selected for BLAST analysis and becomes active after a sequence is
selected (Fig. 5.12 and Fig. 5.13). Fig. 5.13 and Fig. 5.14 further demonstrate
how predicted sequences can be selected and sent for further analysis using
BLAST. Note that selected sequences can be unselected by simultaneously
pressing the Control and the left click button on the Mouse (on Windows)
and the Apple button and the click (on Mac).

GenScan Result Dialog

>gi | GENSCAN _predicted _peptide_l|325_sa
LISFTSPFNFIGKKSWQCITEAGFDRVDETIIFVISQSSRNVIVGEFLODPCQGLPLL
{DLSSKQAANLFPUORMEAVACDILLIMQPGHGOPAFLQGHSSRLSGAAEQVGSWSHRSQ
SLLWSVPEPVOOAGFLFPEALQSAGCFLPSNIGLOVLOFUTLGLTSVVCQGLSGLWPQ
IEGCTVGFSTFEVLGLGLASLLLSLOQTAYCGTSPCDHSSSLSDSKAAVLENIGLLPLTHL
SECSRGGTQTGISGLKTELGAKVARYCOAEYGGESHAERE FWTPTEESLRVYKRGLISSA
SGISVDHGSLPEGLTKTFIPEGYEP

gi|GENSCAN predicted CDS_1|978_bp
atggcccraatcagttrtacatctocgtttaattttattggaaagaagagctygcaatgce
atcacagaggccggctttgacaaagtggatgaaacaattatcttcgttatcagccaaage
agtagasatgtgatagttggggaatititgcagyacccatyccaggycttacctctgcta
aagyatttgtecte gecaggcag ctgttocococttggcagaggatggaagcogty
gctrgtgacattctoctgataatgocagecagygccacgggoagecagecatttotgcagggy
atgagctccaggctoagtyggycageagagcaagtygggagotyyteccatgagyagtocay
cgrtocattccttgetytyggtetyttoctgaaccagtocaacaggoctygcttcctgtiecca
gaagccotccaaagtgctyggatygcttecctgoccatcgaacatiggactocaagttcttecag
CLLCYgactottygacttacatCaytyytityccayyyactoteagyCccLiLyycctoag
‘attgaagyctgcactytegygcttctetacttityagytitigggacteggactyggettee
|CtgctcctocagecttgecagacagectatLgtgygactLcaccttgtgatcattoccageage
| Ctttcggattccasagcggctgtoctygaaaatatagggetocticcactaacccaccte
totgaatgcagcagagytyyaaccoagacagyyatoagtygggttasagacagagetygya
gccaaggragecagagttigecaggcagagtatgycggagagageccacygcagagagagaa
ttctygacacctacyggaggaatctoticgagtatataaaagagyactygatcagcagtyca
tcagygtatctetyttgatcatygttocrtacccyaagyactgactaaaaccttrattect
R T m

Fig. 5.13. Selecting sequences for BLAST analysis

Creating a Gene Prediction and BLAST Analysis Pipeline 245

< SwingBlast Version 3.0

SwingBlast Blast Result Help

BGGLTGLLTICC TG ICCCAGARGL LU TC LA AL TGL IGGATGLTICCTG
CCATCGAACATTGGACTCCAAGTTCTTCAGTTTTGGACTCTTGGACTTAC
ATCAGTGGTTTGCCAGGGACTCTCAGGCCTTTGGCCTCAGATTGAAGGCT
GCACTGTCGGCTTCTCTACTTTTGAGGTTTTGGGACTCGGACTGGCTTCC
MTTGCTCCTCAGCTTGCAGACAGCCTATTGTGGGACTTCACCTTGTGATCA
TTCCAGCAGCCTTTCGGATTC CAAMAGCGGCTGTCCTGGAARATATAGGGE
Sequence cCTTCCACTAACCCACCTCTCTGAATGCAGCAGAGGTGGAACCCAGACA
GGGATCAGTGGGTTAAAGACAGAGCTGGGAGCCAAGGTAGCCAGAGTTTG
CCAGGCAGAGTATGGC GGAGAGAGCCACGCAGAGAGAGAATTCTGGACAC
CTACGGAGGAATCTCTTCGAGTATATARAAGAGGACTGATCAGCAGTGCA
TCAGGTATCTCTGTTGATCATGGTTCTTTACCCGAAGGACTGACTAAAAC
CTTTATTCCTGAAGGGTATGAACCATAG

ID

Program [viBlastN [] BlastX [] TBlastX
Database nr il

E-value 0.001 ¥

| clear | Submit

Status: Ready

Fig. 5.14. Sending predicted genes to SwingBlast for BLAST analysis

Only BLASTN has been implemented in the swingGenscan application
for the purpose of demonstration. The user can further develop the
application by adding functionality for other BLAST operations. The
Genscan-BLAST analysis pipeline can be implemented in a completely
different manner than described here. For example, the Genscan output
window displaying the gene and peptide predictions can be modified to
contain the appropriate widgets to perform multiple BLAST analyses on
multiple selected sequences without the intermediate step of invoking the
SwingBlast application. The implementation shown here is one of many
ways to achieve the same end-result.

Summary

In this Chapter, we have demonstrated how we can create a basic gene
prediction and annotation pipeline by connecting the Genscan and BLAST
programs together. We created the BLAST application separately and tied
it together with Genscan thereby building an analytic pipeline that
demonstrates reuse of existing code libraries. The addition of functionality

246

to Genscan to enable BLAST analysis of predicted sequences is an
example of a real-life use case that will have much practical utility for
researchers who are involved in the sequencing and study of new genomes.

Questions and Exercises

1. The sSwingGenScan application created in the Chapter
demonstrated the ability to perform BLASTN searches. Extend the
application to enable other types of BLAST searches (BLASTX,
BLASTP, etc.).

2. An important goal of gene prediction is to decipher gene structure
— that is, the location of exons and introns — in the input nucleotide
sequence. Think about how you would identify intron-exon

boundaries from Genscan predictions and align the individual
introns and exons along the original nucleotide sequence.

Additional Resources

* GenomeScan - http://genes.mit.edu/genomescan.html

* Glimmer - http://www.cbcb.umd.edu/software/glimmer/
* HMMGene - http://www.cbs.dtu.dk/servicessHMMgene/

* TwinScan - http://genes.cs.wustl.edu/

Selected Reading

Prediction of complete gene structures in human genomic DNA. Burge, C.
and Karlin, S. (1997) J. Mol. Biol. 268, 78-94.

Finding the genes in genomic DNA. Burge, C. B. and Karlin, S. (1998)
Curr. Opin. Struct. Biol. 8, 346-354.

Creating a Gene Prediction and BLAST Analysis Pipeline 247

Computational inference of homologous gene structures in the human
genome. Yeh, R.-F., Lim, L. P., and Burge, C. B. (2001) Genome Res. 11:
803-816.

Improved microbial gene identification with GLIMMER (1999) A.L.
Delcher, D. Harmon, S. Kasif, O. White, and S.L. Salzberg. Nucleic Acids
Research 27:23, 4636-4641.

Two methods for improving performance of an HMM and their application
for gene finding. In Proc. of Fifth Int. Conf. on Intelligent Systems for
Molecular Biology, ed. Gaasterland, T. et al., Menlo Park, CA: AAAI
Press, 1997, pp. 179-186.

Chapter VI

cancer Biomedical Informatics Grid (caBIG™)

cancer Biomedical Informatics Grid

Whole genome sequencing projects that led to the sequencing and
assembly of the human genome and scores of other vertebrate and
invertebrate genomes have changed the face of biology and medicine
forever. The convergence of molecular-scale biological science, high-
throughput technologies and large-scale computing has led to an explosive
growth in the volume of information that is available to the modern day
biomedical scientist. The success of biomedical research in designing
effective therapies for the treatment of complex diseases such as cancer is
fundamentally dependent on our ability to integrate and assimilate this raw
and largely unstructured data from a variety of experimental platforms
encompassing the genomics, proteomics, transcriptomics and the
pharmacological and clinical domains. It is also increasingly becoming
evident that cooperation among research organizations across geographical
boundaries and an open sharing of datasets and analytic tools as well as
individual expertise and knowledge 1is critical to the continued
advancement of biomedical research towards its goals.

The cancer Biomedical Informatics Grid project or caBIG™
(pronounced see-ay-big) is built on this very premise. We had provided an
introduction to the caBIG™ program in Chapter 1. To recap, the caBIG
project was launched in July 2003 and is initiated and funded by the
United States National Cancer Institute (NCI) under the aegis of the United
States National Institutes of Health (NIH). CaBIG™ is a critical

250

component of NCI’s challenge goal of eliminating suffering and death due
to cancer by the year 2015. Indeed, CaBIG™ is an effort designed to
achieve a level of cross-disciplinary integration that is unprecedented in
the history of cancer research. According to NCI Director, Dr. Andrew von
Eschenbach, “...caBIG will become the ‘World Wide Web’ of cancer
research informatics and will accelerate the development of exciting
discoveries in all areas of cancer research”. According to the official
website (http://cabig.nci.nih.gov/), caBIG is a voluntary, open source, open
access initiative that is being designed and built in partnership with the
cancer research community across the United States. Since the caBIG pilot
program was launched, more than 50 interested NCI-designated cancer
centers and more than 800 individuals have participated in the
development of the vision, approach and structure of caBIG..

Structure and Organization of caBIG™

caBIG™ participating institutions are organized into Workspaces that
are devoted to specific domains of interest relevant to cancer research.
Currently, there are four Domain Workspaces, two Cross Cutting
Workspaces and three Strategic Level Workspaces. Table 6.1 provides
names and descriptions of the various Workspaces under caBIG™ .

Table 6.1. Structure of caBIG™

[Workspace name urpose I
[Domain Workspaces
Clinical Trial Management [Modular development of tools for the management off
Systems Workspace iclinical trials. These include development of a
structured model for protocol representation as well
as tools for managing and reporting adverse events
that occur during the course of a clinical trial, a
laboratory interface module to facilitate automated
submission of data to clinical trials systems, a
reporting module to submit data electronically to
INCI’s CDUS (Clinical Data Update System) and the
INCI’s Clinical Trial Monitoring Service (CTMS) and
a financial/billing module to monitor budgets and
expenditure in clinical trials. The Workspace is
divided into special interest groups for each of these
difference activities.

Integrative Cancer Research {Development of modular and interoperable tools and

cancer Biomedical Informatics Grid 251

[Workspace

interfaces that provide for integration of clinical and
basic research data derived from genomics and
proteomics platforms. The Workspace is organized
into special interest groups devoted to topics such as
Genome Annotation, Microarray Repositories,
Pathways Tools, Data Analysis & Statistics,
Population Sciences and Translational Tools. Tools
being developed under the Workspace include
Rproteomics (MALDI-TOF proteomics analysis
tool), Gene Ontology Miner (tool for aggregate
analysis of gene sets), HapMap (map of haplotypes in
human genome), caArray (cancer microarray data
management system), Distance Weighted
Discrimination (microarray data analysis integrator),
[Visual and Statistical Data Analyzer (multivariate
statistical visualization tool for the analysis of
complex data), FunctionExpress (integrated analysis
and visualization of microarray data), Quantitative
Pathway Analysis in Cancer (pathway modeling and
analysis tool), TrAPSS (disease gene mutation
discovery and analysis tool), etc.

In Vivo Imaging Workspace

Development of tools to share and integrate the
wealth of information provided by in vivo imaging
with other types of data. The in vivo imaging
technologies and modalities will include systems for
research and clinical imaging of live patients and
animals (including single-cell organisms) used as
model systems for human disease.

Tissue Banks and Pathology
[Tools Workspace

Development and integration of tissue bank and
pathology tools and infrastructure components to

enable researchers to locate and analyze tissue
specimens for use in cancer research based on tissue,
clinical, and genomic characteristics. Tools created
under this Workspace include a standard
Biospecimen Object Model and suite of tools to
facilitate specimen management, annotation and
sharing. Specific applications being developed are a
specimen inventory and tracking system (caTISSUE
Core), a mapping module to get data from tumor
registries and clinical anatomy laboratory
information systems (caTISSUE Clinical Annotation
[Engine) and a cancer Text Information Extraction
System to automate the process of coding, storing
and retrieving data from free-text Pathology Reports

(caTIES).

252

Cross Cutting Workspaces

IArchitecture Workspace

IDevelopment of tools to ensure consistent application
of caBIG™ principles by the large caBIG™
developer community and to meet the caBIG™
program goals of data sharing and interoperability on
the grid. Activities include formulating guidelines
land definitions for caBIG™ participants to evaluate
the maturity level of potential caBIG™ systems and
applications (caBIG™ Compatibility Guidelines),
development of the grid infrastructure to support the
caBIG™ community (caGrid), development of a
comprehensive grid security infrastructure for
managing federated authentication and authorization
in caBIG™ | etc.

'Vocabularies and Common
IData Elements Workspace

Development of policies and guidelines to evaluate
and integrate systems based on vocabulary and
ontology content as well as software systems for
content delivery. Among the major deliverables of
this Workspace are the Common Data Elements
(CDE) Governance Model to manage the
development and administration of CDEs in the
IDomain Workspaces, data standards approval
guidelines for defining the procedures for reviewing
and approving data standards, procedures for review
and approval of new VCDE content to provide for
overall standardization of CDEs within caBIG™, a
vocabularies deployment document which lists
vocabulary standards consistent with caBIG ™
compatibility requirements and LexGrid, a
vocabulary server that can be accessed through a
iwell-structured application programming interface
(API) capable of accessing and distributing
vocabularies as commodity resources.

Strategic Level Working
Groups

Strategic Planning Working
Group

Development of strategic planning and vision
guidelines in support of the caBIG™ Oversight
Board. Activities include creating white papers and
planning documents that help define the strategic
goals for each individual Workspace as well as for
the overall caBIG™ project, along with metrics to
imeasure the success of defined objectives.

Data Sharing and Intellectual
Capital

Development of policies and white papers to clarify
caBIG’s stand on issues surrounding data sharing and

intellectual property. Some of the major activities of

cancer Biomedical Informatics Grid 253

the Working Group include development of
guidelines and a model agreement for use by
caBIG™ participant institutions to distribute
caBIG™ software and related documentation, a
caBIG ™ publications policy, guidelines on best
practices and model agreements for the sharing of
data and of biospecimens, reagents and other
materials, and a white paper on the de-identification
of patient data.

Training Working Group [Development of a caCORE curriculum designed to
prepare caBIG™ participants to operate and use the
INCI resources such as Enterprise Vocabulary
Services (EVS), Cancer Data Standards Repository
(caDSR), and Cancer Bioinformatics Infrastructure
Objects (caBIO) as well as creating templates and
guidelines for caBIG™ documentation and training
and organizing boot camps to impart training on
caBIG™ technologies.

Further details on caBIG™, its constituent Workspaces and Working
Groups and their objectives are available on the WWW at
http://cabig.nci.nih.gov/. The ultimate aim of caBIG™ is to enable
researchers to collect comprehensive data about cancer in a standardized
manner, to enable the study of cancer data as a whole, thereby accelerating
the pace of cancer research.

The purpose of this chapter is to not only inform the readers of current
efforts in the area of cancer research but also provide knowledge about the
technologies that are being developed as an integral part of the effort so
that the biomedical and the computer scientists among us can begin using
them and in so doing, contribute to their continued development that will
ultimately lead to better healthcare solutions and better care and treatments
for patients. We will begin by reviewing a few tools and technologies that
are relevant to our understanding of how information technologies can
assist biomedical research.

Data Integration and ETL

Biomedical researchers routinely need to access and cross-reference
sequence and related annotation data from a wide variety of sources such
as PubMed, Entrez Gene (previously called LocusLink), Gene Ontology

254

(GO), UniGene, Swiss-Prot, Ensembl, HomoloGene, UniSTS, etc. Because
difference data sources use different formats, it is not easy to compare and
combine data from these sources unless they are converted into a common
format. Data in UniGene, for example, is presented in text format; data in
the GO database is described in an XML format and data in Entrez Gene is
available in binary Abstract Syntax Notation number One (ASN.1) format.

CaBIG™ also handles a wide array of data sources, types and formats,
from a number of different public domain sources since one of its major
goals is to enable access to and sharing of translational research data
between cancer researchers. In order to facilitate integration of diverse data
types, tools that perform what is known as Extract, Transform and Load
(ETL) functions are used. These tools convert data in different formats into
a common, standard, usable format. The first step - Extraction - is the part
that establishes access to the external database or source that contains the
data of interest. The next step - Transformation — analyzes the original data
format and converts it to fit with the format of the target repository. For
example, information on a gene id can be coded as an XML tag in the
form:

<gene id="<my id>"/>

or, as an SQL varchar(64) which means a string of variable length with
a maximum size of 64 characters, and other formats. When we design the
ETL strategy, we will first create business rules and define the format of
the gene identifier that will be used to store that information in the target
repository. If this is the SQL varchar(64) type, we will transform data from
sources that use a different format into this pre-selected target gene ID
format.

The Transformation step can also involve a data-cleansing step to
eliminate bad or duplicate entries from input data sources. This process
can be done after transforming the data or just before adding data to the
target repository. The last step - Load — gets the transformed data loaded
into a data repository or a data warehouse, which is optimized to enable
faster access to the stored data. An additional step after Extract-Transform-
Load is Transportation, which facilitates transport of the formatted data
from its current location to the defined location, before it is processed or
used further.

cancer Biomedical Informatics Grid 255

A number of open source ETL tools are available, for example, Kettle
(available from http://www.kettle.be/), Octopus (available from
http://www.enhydra.org/tech/octopus/index.html), and others. Examples of
ETL tools being developed under the caBIG™ program include cancer
Function Express tool (caFE), which annotates individual probe sequences
(short DNA sequences that represent individual genes or transcripts from a
particular genome) on microarray chips (arrays of thousands of individual
probe sequences embedded on a substrate to detect the presence of specific
genes or transcripts in a given genome by hybridizing probes with nucleic
acids from the test sample) using data from a number of NCBI and other
public databases.

cancer Common Ontologic Representation Environment
(caCORE)

A critical component of the partnership between NCI and the Cancer
Centers in building the biomedical informatics grid is NCI's Center for
Bioinformatics (NCICB). NCICB's mission is to create a close knit and
cooperative cancer research community and an interoperable federation of
informatics resources covering all aspects of cancer research. NCICB is
providing critical support for caBIG through the development of caCORE,
an open source semantic enterprise architecture for NCI-supported
research information systems for genomic and clinical research. A large
number of NCI applications such as the Cancer Molecular Analysis
Project (CMAP), the Cancer Models Database (caMOD), and Gene
Expression Data Portal (GEDP) are directly supported by caCORE. A list
of publicly available data sources in the caCORE database is provided in
Table 6.2. More information on caCORE is available on the NCI caCORE.

Table 6.2. caCORE data sources

Name Purpose

CGAP Cancer Genome Determine the gene expression profiles of normal,

Anatomy Project (CGAP) precancer, and cancer cells, leading eventually to
improved detection, diagnosis, and treatment for
the patient.

CGAP Genetic Annotation Develop a systematic and comprehensive notation

Initiative (GAI) of variations in the DNA sequences of each cancer-
related gene.

Mouse Models of Human Derive and characterize mouse models, and to

Cancers Consortium generate resources, information, and innovative

256

(MMHCC) approaches to the application of mouse models in
cancer research.
Cancer Molecular Analysis Facilitate the identification and evaluation of

Project (CMAP) molecular targets in cancer by integrating
comprehensive molecular characterizations of
cancer.

Gene Expression Data Portal Provide access to microarray data as well as online

(GEDP) data annotation and analysis tools.

Integrated Molecular Establish a common resource of publicly available

Analysis of Genomes and ¢DNA libraries for access to sequence, map, and
their Expression IMAGE) expression data.
Consortium

caCORE is built on the principle of Model Driven Architecture, which is
a way to organize and manage enterprise architectures supported by
automated tools and services for both defining the models and facilitating
transformations between different types of models. CaCORE is built on an
n-tier architecture model and provides open source Application
Programming Interfaces (APIs) which allow for easy access to data by
applications.

The main components of caCORE are:

* Enterprise Vocabulary Services (EVS): Controlled vocabulary resources
(such as the NCI thesaurus and metathesaurus) for the life sciences
domain that provide a context driven semantic basis for the construction
of data elements, classes, and objects.

* Cancer Data Standards Repository (caDSR): A metadata registry based
upon the ISO/IEC11179 standard that renders research data on cancer
reusable and interoperable. The 11179 standard created by the
International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) specifies the criteria
for metadata that are necessary to describe data, as well as the
management and administration of that metadata in a metadata registry.

* Cancer Bioinformatics Infrastructure Objects (caBIO): A suite of
software, vocabulary, and metadata models for cancer research.

We will explore caBIO objects in further detail in this chapter.

cancer Biomedical Informatics Grid 257

Cancer Bioinformatics Infrastructure Objects (caBIlO)

caBIO objects constitute the primary programming interface to
caCORE. caBIO objects are implemented using Java and Java Bean
technology, and model the behavior of hierarchies of biological entities
such as genes, sequences and chromosomes, their constituent molecular
forms such as Single Nucleotide Polymorphisms (SNPs, a single nucleotide
difference at a defined location within an individual’s DNA sequence), and
other entities such as clones, libraries, agents, pathways, tissues and
diseases. A representative list of objects and their descriptions are shown
in Table 6.3.

Table 6.3. caBIO domain objects

Object name Description

Gene The basic physical and functional unit of heredity. Gene
objects are the effective portal to most of the genomic
information provided by the caBIO data services such as
organs, diseases, chromosomes, pathways, sequence data,
and expression experiments.

GeneAlias An alternative name for a gene; provides descriptive
information about the gene (as it is known by this alias), as
well as access to the Gene object it refers to.

GoOntology An object providing entry to a Gene object’s position in
the Gene Ontology Consortium’s controlled vocabularies.
GoOntology provides access to gene objects
corresponding to the ontological term, as well as to
ancestor and descendant terms in the ontology tree.

Target A gene thought to be at the root of a disease etiology and
targeted for therapeutic intervention. Defined and used by
the CMAP project.

Protein An object representation of a protein; Protein objects

provide access to the encoding gene via its GenBank ID,
the taxon in which this instance of the protein occurs, and
references to homologous proteins in other species.

Disease Specifies a disease name and ID; also provides access to
ontological relations to other diseases; clinical trial
protocolstreating the disease; and specific histologies
associated with instances of the disease.

Pathway An object representation of a molecular/cellular pathway
compiled by BioCarta. Pathways are associated with
specific Taxon objects, and contain multiple Gene objects,
which may be targets for treatment.

258

Therapeutic agent A therapeutic agent (drug, intervention therapy) used in a
clinical trial protocol.

ClinicalTrialProtocol The protocol associated with a clinical trial; organizes
administrative information about the trial such as
Organization ID, participants, phase, etc. provides access
to the administered Agents.

Histopathology An object representing anatomical changes in a diseased
tissue sample associated with an expression experiment;
captures the relationship between organ and disease.

caBIO provides programmatic access to a variety of open source
genomic, biological, and clinical data sources available from the NIH such
listed previously (such as Unigene, EntrezGene, etc.) as well as others
such as Biocarta and clinical trials protocols, etc. caBIO is built upon open
source technologies such as Java, Simple Object Access Protocol (SOAP,
an XML based platform and language independent protocol for
exchanging information between applications over the web), Apache,
Jakarta Tomcat, XML and UML. There are a number of ways that users
can access caBIO. Java-based clients communicate with caBIO via the
Java API, which contains the domain objects provided by the caBIO.jar
file. Non-Java based applications can communicate via SOAP, or by using
the caBIO HTTP API and receive objects as XML. caBIO provides access
to curated data from multiple sources as described in Table 6.4.

Table 6.4. caBIO data sources

NCBI UniGene Unigene provides a nonredundant partitioning of the
genetic sequences contained in GenBank into gene
clusters. Each such cluster has a unique UniGene ID and a
list of the mRNA and EST sequences that are subsumed
by that cluster.

NCBI Entrez Gene Entrez Gene contains curated sequence and descriptive

(previously called information associated with a gene such as gene name,

LocusLink) aliases, sequence accession numbers, phenotypes,
UniGene cluster IDs, OMIM IDs, gene homologies,
associated diseases, map locations, etc.

Gene Ontology (GO) The Gene Ontology Consortium provides a controlled

terms vocabulary for the description of molecular functions,
biological processes, and cellular components of gene
products.

NCBI HomoloGene HomoloGene is a resource for curated and calculated gene
homologs.

BioCarta pathways BioCarta provides detailed graphical renderings of

cancer Biomedical Informatics Grid 259

pathway information concerning apoptosis, cell signalling,
cell cycle regulation, immunology, metabolism, and
neuroscience, etc.
NCI Cancer Therapy CTEP funds an extensive national program of basic and
Evaluation Program clinical research to evaluate new anti-cancer agents, with a
(CTEP) particular emphasis on translational research to elucidate
molecular targets and drug mechanisms.
NCI Cancer Models caMOD provides information on animal models of human
Database (caMOD) cancer.

Downloading and Configuring caBIO

caBIO can be downloaded from the NCICB website at:

http://ncicb.nci.nih.gov/download/index. jsp

Download caCORE3-1.zip file (or the latest available version), unzip to
extract the required libraries and save them in an appropriate location
making sure that the absolute path to client.jar is declared in the Java
classpath. Fig. 6.1 below shows the caCORE download page.

tes of lealth | wwwicanceeo

* caCORE v3.1

Primasy Distiilusion
The primary caCORE diviribubon corksms Mo ¢ JCORE clent [a Me, a TesiChent cemonsiialion program,
and 3 caCORE 3.1 UML moded in Enderprise Achits<l EAP e sormal The chiend jan e 18 & Java aechive file
I didres ol of T CaCORE doman ohiecls, o5 well 58 the ApsRcationSendce cids requind lo Issug
aunres b e calORE sener.

Tp tie CACORE3.A By

cabORE 11 Relyase Nobrs CACORED | notps g

taCORE Pimary Reanme caCORES-1 README nd

Souce code-Server st anion
Thie calORE 11 contas i of taCORE,

cocoredl wan e, an ovarngle [DosS piecle deaml, and a 3L ORE 21 DML micdal in Emnrwu;hcl‘lwﬂ
EAP fils farmat

Dy tie (BCORES 1 SOURCE zip

FACORE SourceSenver Resme [CORET-| SOURCE README i

caBI0-MOD databuase

Thi cags T The caBIC- m;t _DATABASE ip coniaing
the cudlic schemas lor instaliing BO-MOD databases: The

CRBI0MO03 1_gbl-T dmp g2 oS contain the achus dala o populate tha database Cue 10 fg download
Niridulions the GALESS CUME Niks Baen bicken ug inlo hens B

mmm GlIpvi 33 |lnu|udvu|\nn the datahasse dump Me Ou? lo Ihe 5@e of he diabase cume
‘rigel Wpet 15 3 command ling Uiy f retnening a

RN M I0C Pt SO S

S rodtnt 3 Pt P | JW Euud\m

Fig. 6.1. caBIO download page

260

Now that we have reviewed some of the concepts, technologies and
resources available to us from NIH, NCI and other sources, we will create
a simple practical application to demonstrate how to integrate the
individual isolated bits of data together into a richer, more usable dataset.

Creating the JcaBIO Application

We will create an application based on the caBIO API that we will call
JcaBIO to demonstrates how data pertaining to the Gene and the Agent
object can be retrieved using caBIO API. We will create three search
functions as outlined below that will define the business logic of the
application:

Gene scarch function: The gene search function will create a report that
provides information such as gene name and symbol, Unigene Cluster ID,
associated GO terms, gene product name and aliases.

Pathway search function: The pathway search function creates a report
that provides information on the pathways that a gene participates in along
with a description and a link to the pathway map on BioCarta.

Agent search function: The agent search function creates a report that
contains the names of the target(s) that a therapeutic agent binds, the
clinical trials that an agent is involved in along with the status, Phase and
the name of the institution conducting the trial.

According to this scheme, we will need four command buttons — one
each for creating the Gene, Pathway and Agent report and one to clear the
report. We will label the command buttons, “Run a Gene Search”, “Run a
Gene/Pathway Search” and “Run an Agent Search” respectively. We will
need a text area to display the reports. We will place this below the
command buttons. We will need one text box each to enter the gene name,
the agent name and specify the number of reports we want to retrieve for
each search. We will place a default value of 10 in the last text box to
begin with. We also need a message area to provide the users information
on the current state of the application. When the application is launched
and when a search is complete, the status will display the “Ready!”
message. We will place the status bar below the text area.

cancer Biomedical Informatics Grid 261

When the application is initially launched, all the command buttons will
be disabled; the command buttons will become available after a valid gene
or an agent is entered into the appropriate fields. Only the appropriate
command buttons corresponding to the entries will be activated. An entry
in the Gene field, for example, will activate the “Run a Gene Search” and
“Run a Gene/Pathway Search” buttons while an entry in the Agent field
will activate the “Run an Agent Search” button. The Clear button will be
activated only after a search has been run and there are results to display.

JcaBIO Classes and Application Structure

The structure of the JcaB10 application is shown in Fig. 6.2.

- org
L ifb
L jcabio

—— CaBIOReportEngine
—— CaBIOSearchEngine
— SearchException

. StatusObiject

— SwingCaBIO

Fig. 6.2. Structure of JcaBIO

A description of the various classes and the corresponding code is as
follows:

swingcaBIo: This is the main Swing application interface that enables
users to send queries and display reports about genes or agents using the
caCORE API.

262

searchException: This class handles exceptions when a search fails.

StatusObject: This class stores information on the state of the
CaBI0OSearchEngine Or the CaBIOReportEngine, which respectively
handle the search and the report processes. Using a StatusObject instead
of a String object affords a more generic way of passing the required
information. As a result, we have the freedom to modify the statusobject
class without having to change the signature of the method that uses this
object. We would need to modify only the content of the code as
appropriate.

CaBIOReportEngine: This is the class that generates the Gene or Agent
reports.

CaBIOSearchEngine: This class provides the functionality that enable
users to perform gene or agent searches.

The application at start up showing the various Swing components is
shown in Fig. 6.3.

= SwingCaBIO
’7
Coms 5 , Number of results: |10
Drug Agent
hlo Report.
Readhy!

Fig. 6.3. The JcaBIO application at start up

cancer Biomedical Informatics Grid 263

Coding the SwingCaBIO Application

swingcaBIO defines the application interface that the user interacts with
to send and retrieve queries using the caCORE API. swingCaBI10 is based
on the same Swing elements and concepts that were described in Chapter
1. swingcaBIO extends JFrame in order to generate a basic container for
the application. swingcaBI0 also extends DocumentListener to listen to the
JTextField objects in order to enable or disable the corresponding buttons
that run the report. The constructor SwingcCaBIio() calls the super
constructor and adds the observer to the Agent search and the report
engine. At that point, the application consists of a frame and nothing else
built inside. We then call the init() function explained below that will
build our form for the Gene and Agent searches.

As described earlier, we need three command (search) buttons for
running the three custom reports and a text area to display the search
results. We use what are called factory methods to create the different
pieces that are assembled in the init () method. Factory methods refer to
the Factory Design Pattern, which specifies a way to create objects
without having to know how they are created or assembled. This design
allows the developer to change the way the buttons and other Swing
components are displayed without interfering with the rest of the Swing
components that make the application. The SwingcaBro() method is
described below:

public SwingCaBIQO() throws HeadlessException {
super();
AGENT_SEARCH.addObserver (observer);
REPORT_ ENGINE.addObserver (observer);

}

private void init() {
setTitle("SwingCaBIO");
final Container contentPane = getContentPane();
contentPane.setLayout (new BorderLayout());
JPanel formPanel = createForm();
JPanel reportPanel = createReportPane();
statusBar = new JLabel (STATUS_READY);
statusBar.setBorder (BorderFactory.createEmptyBorder (5, 5,
5, 5));
contentPane.add(formPanel, BorderLayout.NORTH);
contentPane.add(reportPanel, BorderLayout.CENTER);
contentPane.add(statusBar, BorderLayout.SOUTH);
setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
pack();
setSize (DIMENSION) ;

264

final Dimension screenSize = Toolkit.getDefaultToolkit().
getScreenSize();

setLocation(new Point((screenSize.width - SW_WIDTH) / 2,
(screenSize.height - SW_HEIGHT) / 2));

show () ;

The getNumberOfobjectsForResult() method handles the total
number of results to return for a search. As indicated earlier, we will place
a default value of 10 for this.

private static final StatusObject STATUS_REPORT GENERATED =

new StatusObject("Report generated!", 10);

final int len =

getNumberOfObjectsForResult (genes.length);

sb.append("Search Results for '" + genePattern + "' (" +

len + " gene(s) found):\n\n");

for (int i = 0; i < len; i++) {
Gene gene = genes[i];
REPORT_ENGINE.printFullGeneReport(gene, sb, i + 1);

}

We use the showReport() method to set the text arca with the current
StringBuffer object containing the report generated. Anytime a Swing
object is modified, we need to make sure that the method runs in the event-
dispatching thread (also called the AWT thread) to avoid painting
problems. The method checks if we are already in the event-dispatching
thread before calling the runnable object.

private void showReport(final StringBuffer sb) {
Runnable runnable = new Runnable() {
public void run() {
jTextArea.setText(sb.toString());
}
}i
if (SwingUtilities.isEventDispatchThread())
runnable.run();
else
SwingUtilities.invokeLater (runnable);

The methods insertUpdate(), changeUpdate() and removeUpdate()
are methods from the DocumentListener interface. We will use these
methods to update the buttons according to the values found in the gene
and the agent fields.

public void insertUpdate (DocumentEvent event) {

cancer Biomedical Informatics Grid 265

updateButtons();
}

private void updateButtons() {
boolean enabled = gene.getText().trim().length() > 0;
runGenePathwayReport.setEnabled(enabled);
runFullGeneReport.setEnabled(enabled);
runTargetAgentReport.setEnabled(agent.getText () .trim().
length() > 0);

The three update methods are delegating the treatment of the event to
the updateButtons () method. The updateButtons () method enables or
disables buttons according to the status of the search and the corresponding
report that is generated. We add a utility method called errorbump() to
create an error message and update the status bar to alert user about any
problems encountered:

private void errorDump(StringBuffer sb, SearchException e)

{
sb.delete(0, sb.length());
sb.append("An error occured!\n\n" +
e.getEmbedded() .getMessage());
updateStatus (new StatusObject("An error occured!", 5));

}

We include a method to update the status of the search and reporting
using the updateStatus() method. updatestatus() sets the text in the
status bar with information on the state of the search. We need to invoke
and display the update right away to ensure that the user is alerted as soon
as an issue arises. For this reason we have implemented the
invokeAndwait () instead of the invokeLater () method.

These methods force the JVM to invoke the run() method of the
Runnable object passed as an argument, inside the event-dispatching
thread.

private void updateStatus(final StatusObject
statusObject) {
Runnable runnable = new Runnable() {
public void run() {

statusBar.setText(statusObject.getStatusText());
if (statusObject.hasTimer()) ({
new Thread(new Runnable() {
public void run() {
try {
synchronized (this) {

266

this.wait(statusObject.getTimer() * 1000);

updateStatusToReady () ;
} catch (InterruptedException

e) {
e.printStackTrace();
}
}
}).start();
}
}
}i
if (SwingUtilities.isEventDispatchThread()) {
runnable.run();
} else {
try {
SwingUtilities.invokeAndWait (runnable);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
}

The main() method starts the creation of the swingCaBIO in the event-
dispatching thread. This avoids having paint methods that freeze the
application i.e., the application does not respond to any mouse clicks or
keyboard interactions or the application is just gray with no components
created in the main frame.

public static void main(String[]} args) {
SwingUtilities.invokeLater (new Runnable() {
public void run() {
final SwingCaBIO swingCaBIO = new SwingCaBIO();
swingCaBIO.init();
}
Y
}

The complete code for the swingcaBIo class is provided in Listing 6.1.

Listing 6.1. Class SwingCaBIO
package org.jfb.jcabio;

import gov.nih.nci.cabio.domain.Agent;
import gov.nih.nci.cabio.domain.Gene;

cancer Biomedical Informatics Grid 267

import javax.swing.*;

import javax.swing.event.DocumentEvent;

import javax.swing.event.DocumentListener;

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.lang.reflect.InvocationTargetException;
import java.util.Observable;

import java.util.Observer;

public class SwingCaBIO extends JFrame implements
DocumentListener {
private static final int SW_WIDTH = 700;
private static final int SW_HEIGHT = 600;

private static final Dimension DIMENSION = new
Dimension(SW_WIDTH, SW_HEIGHT);
private static final Dimension DIM_FIELD = new

Dimension(85, 18);
private final static String CABIO_HTTP_SERVER URL =

"http://cabio.nci.nih.gov/cacore30/server/HTTPServer";

private final static ApplicationService APP_SERVICE =

ApplicationService.getRemoteInstance (CABIO_HTTP_SERVER
_URL);

private static final CaBIOSearchEngine AGENT_SEARCH =
new CaBIOSearchEngine(APP_SERVICE);

private static final CaBIOReportEngine REPORT_ ENGINE
new CaBIOReportEngine(APP_SERVICE);

it

private static final String STATUS READY = "Ready!";
private static final StatusObject
STATUS_REPORT GENERATED = new StatusObject ("Report

generated!", 10);

private JTextArea jTextArea;

private JTextField gene;

private JButton runFullGeneReport;
private JButton runTargetAgentReport;
private JButton runGenePathwayReport;
private JButton clear;

private JLabel statusBar;
private JTextField result;
private JTextField agent;

public SwingCaBIO() throws HeadlessException {
super();
AGENT_SEARCH.addObserver (observer);
REPORT_ENGINE.addObserver (observer);

}

private void init() {
setTitle("SwingCaBIO");

268

final Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());
JPanel formPanel = createForm();

JPanel reportPanel = createReportPane();
statusBar = new JLabel (STATUS_READY);

statusBar.setBorder (BorderFactory.createEmptyBorder(5, 5, 5,
5))i
contentPane.add(formPanel, BorderLayout.NORTH);
contentPane. add(reportPanel, BorderLayout.CENTER);
contentPane.add(statusBar, BorderLayout.SOUTH);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

pack();
setSize (DIMENSION) ;
final Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();

setLocation(new Point((screenSize.width - SW_WIDTH)
/ 2, (screenSize.height - SW_HEIGHT) / 2));

show();

}

private JPanel createReportPane() {
jTextArea = new JTextArea();
jTextArea.setText("No Report.");
jTextArea.setEditable(false);
jTextArea.setWrapStyleWord(true);
jTextArea.setLineWrap(true);
final Font sf = jTextArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(),
sf.getSize());
jTextArea.setFont(f);
jTextArea.getDocument () .addDocumentListener (new
DocumentListener() {
public void insertUpdate(DocumentEvent event) {

clear.setEnabled(jTextArea.getText().trim().length() != 0);
}

public void removeUpdate(DocumentEvent event) {

clear.setEnabled(jTextArea.getText().trim().length() != 0);

}

public void changedUpdate(DocumentEvent event)
{
clear.setEnabled(jTextArea.getText().trim().length() != 0);

}
i
JPanel jPanel = new JPanel();
jPanel.setLayout (new BorderLayout());
final JScrollPane jScrollPane = new
JScrollPane(jTextArea);

cancer Biomedical Informatics Grid 269

jPanel.add(jScrollPane, BorderLayout.CENTER);

jPanel.setBorder (BorderFactory.createEmptyBorder (0,
5, 5, 5));

return jPanel;

}

private JPanel createForm{) {

final JPanel genePanel = new JPanel();

genePanel.setLayout (new BoxLayout (genePanel,
BoxLayout.LINE_AXIS));

gene = new JTextField(10);

this.gene.setMaximumSize (DIM_FIELD);

gene.getDocument () .addDocumentListener(this);

final JLabel geneLabel = new JLabel("Gene");

geneLabel.setPreferredSize(DIM_FIELD);

genePanel.add(Box.createRigidArea(new Dimension(5,
0)));

genePanel.add(geneLabel);

genePanel.add(Box.createRigidArea(new Dimension(5,
0)));

genePanel.add(gene);

genePanel.add(Box.createHorizontalGlue());

final JPanel agentPanel = new JPanel();

agentPanel.setLayout (new BoxLayout (agentPanel,
BoxLayout.LINE AXIS));

agent = new JTextField(10);

agent.setMaximumSize (DIM_FIELD);

agent.getDocument().addDocumentListener(this);

final JLabel agentlLabel = new JLabel("Drug Agent");

agentLabel.setPreferredSize(DIM FIELD);

agentPanel.add(Box.createRigidArea(new Dimension(5,

0)));

agentPanel.add(agentLabel);

agentPanel.add(Box.createRigidArea(new Dimension(5,
0))):

agentPanel.add(this.agent);

agentPanel.add(Box.createHorizontalGlue());

JPanel jPanel = new JPanel();

jPanel.setLayout (new BoxLayout (jPanel,
BoxLayout.PAGE_AXIS));

jPanel.add(Box.createRigidArea(new Dimension(0,
5)));

jPanel.add(genePanel);

jPanel.add(Box.createRigidArea(new Dimension(0,
5)));

jPanel.add(agentPanel);
jPanel.add(Box.createRigidArea (new Dimension(0,

3))):

final JPanel resultPanel = new JPanel();
resultPanel.setLayout(new BoxLayout (resultPanel,
BoxLayout.LINE AXIS));

270

result = new JTextField("10", 10);

result.setMaximumSize(DIM _FIELD);

final JLabel resultLabel = new JLabel("Number of
results:");

resultPanel.add(Box.createRigidArea(new
Dimension(5, 0)));

resultPanel.add(resultLabel);

resultPanel.add(Box.createRigidArea(new
Dimension(5, 0)));

resultPanel.add(result);

JPanel jPanelResult = new JPanel();

jPanelResult.setLayout(new BoxLayout(jPanelResult,
BoxLayout.LINE_AXIS));

jPanelResult.add(jPanel);

resultPanel.add(Box.createRigidArea(new
Dimension(20, 0)));

jPanelResult.add(resultPanel);

resultPanel.add(Box.createHorizontalGlue());

runFullGeneReport = new JButton("Run a Gene
Search");
runFullGeneReport.setToolTipText ("Please provide a
gene to search for.");
runFullGeneReport.setEnabled(false);
runFullGeneReport.addActionListener (new
ActionListener() {
public void actionPerformed(ActionEvent event)
{ .
final StringBuffer sb = new StringBuffer();
Runnable runnable = new Runnable() {
public void run() {
final String genePattern

1

gene.getText();
showReport (new

StringBuffer("Searching with gene '™+ genePattern +
e "))
try {
final Genel] genes =
AGENT_SEARCH.searchGenesWithGenePattern(genePattern);
final int len =

getNumberOfObjectsForResult(genes.length);
sb.append("Search Results for
(" + len + " gene(s) found):\n\n");
for (int i = 0; i < len; i++) {
Gene gene = genes[il];

(D "o

+ genePattern +

REPORT ENGINE.printFullGeneReport(gene, sb, i + 1);
showReport (new
StringBuffer(jTextArea.getText()).append("\n")
.append("Generated
report for gene '" + gene.getFullName() + "'"));

cancer Biomedical Informatics Grid 271

if (i + 1 < len)
sb.append("\n\n");
}

updateStatus (STATUS_REPORT_ GENERATED);
} catch (SearchException se) {
errorDump(sb, se);

}
showReport (sb);
}
}i
new Thread(runnable).start();
}
})i
runGenePathwayReport = new JButton("Run a

Gene/Pathway Search”);
runGenePathwayReport.setToolTipText("Please provide
a Gene to search for.");
runGenePathwayReport.setEnabled(false);
runGenePathwayReport.addActionListener (new
ActionListener() {
public void actionPerformed(ActionEvent event)
{
final StringBuffer sb = new StringBuffer();
Runnable runnable = new Runnable() {
public void run() {
final String genePattern

gene.getText();
showReport (new

StringBuffer("Searching with gene " + genePattern +
UMY
try {
final Genel] genes =
AGENT_ SEARCH.searchGenesWithGenePattern(genePattern);
int len =

getNumberOfObjectsForResult(genes.length);
sb.append("Search Results for
+ genePattern + "' (" + len + " gene(s) found):\n\n");
Gene gene;
for (int i = 0; i < len; i++) {
gene = genes[i];

REPORT ENGINE.printGenePathwayReport(gene, sb, 1 + 1);

showReport (new
StringBuffer(jTextArea.getText()).append("\n")

.append("Generated

report for gene '" + gene.getFullName() + "'"});

if (i + 1 < len)

sb.append("\n\n");
}

updateStatus (STATUS_REPORT GENERATED) ;
} catch (SearchException se) {

272

errorDump(sb, se);

}
showReport (sb);
}
Yi
new Thread(runnable).start();
}
i
runTargetAgentReport = new JButton("Run an Agent

Search");
runTargetAgentReport.setToolTipText("Please provide
an agent to search for.");
runTargetAgentReport.setEnabled(false);
runTargetAgentReport.addActionListener (new
ActionListener() {
public void actionPerformed(ActionEvent event)
{
final StringBuffer sb = new StringBuffer();
Runnable runnable = new Runnable() {
public void run() {
final String agentPattern

il

agent.getText ();
showReport (new
StringBuffer("Searching with agent '" + agentPattern

)
try {
final Agent[] agents =
AGENT_SEARCH.searchAgentsWithAgentPattern(agentPattern);
final int len =

getNumberOfObjectsForResult(agents.length);

sb.append("Search Results for
'" + agentPattern +

" (" + len + "

agent(s) found):\n\n");

Agent agent;

for (int 1 = 0; i < len; i++) {

agent = agents[i];

REPORT ENGINE.printGeneAgentCliTriReport(agent, sb, i + 1);
showReport (new
StringBuffer(jTextArea.getText()).append("\n")
.append("Generated
+ agent.getName() + "'"}));
if (i + 1 < len)
sb.append("\n\n");

report for agent

}

updateStatus (STATUS_REPORT GENERATED);
} catch (SearchException se) {
errorbDump(sb, se);
}
showReport(sb);

cancer Biomedical Informatics Grid 273

Yi
new Thread(runnable).start();
}
})i
clear = new JButton("Clear Report");
clear.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event)

jTextArea.setText("");

}
})i
clear.setEnabled(false);

JPanel buttonPanel = new JPanel();

buttonPanel.setLayout (new BoxLayout (buttonPanel,
BoxLayout.LINE_AXIS));

buttonPanel.add(runFullGeneReport);

buttonPanel.add(Box.createRigidArea(new
Dimension(5, 0)));

buttonPanel.add(runGenePathwayReport});

buttonPanel.add(Box.createRigidArea(new
Dimension(5, 0)));

buttonPanel.add(runTargetAgentReport);

buttonPanel.add(Box.createRigidArea(new
Dimension(5, 0)));

buttonPanel.add(clear);

JPanel formPanel = new JPanel();
formPanel.setLayout(new BorderLayout());
formPanel.add(jPanelResult, BorderLayout.NORTH);
formPanel.add(buttonPanel, BorderLayout.CENTER);
return formPanel;

}

private int getNumberOfObjectsForResult(int len) {
String numOfRes = result.getText();
if (numOfRes != null && numOfRes.trim().length() >

return Math.min(Integer.parseInt(numOfRes),
len);
}

return len;

}

private void showReport(final StringBuffer sb) {
Runnable runnable = new Runnable() {
public void run() {
jTextArea.setText(sb.toString(}));
}
}i
if (SwingUtilities.isEventDispatchThread())
runnable.run();
else
SwingUtilities.invokeLater (runnable);

274

}

public void insertUpdate(DocumentEvent event) {
updateButtons();
}

private void updateButtons() {
boolean enabled = gene.getText().trim().length() >

runGenePathwayReport.setEnabled(enabled);
runFullGeneReport.setEnabled(enabled);

runTargetAgentReport.setEnabled{agent.getText().trim().length
() > 0);
}

private void errorDump(StringBuffer sb, SearchException
e) {
sb.delete(0, sb.length());
sb.append("An error occured!\n\n" +
e.getEmbedded().getMessage());
updateStatus (new StatusObject("An error occured!"”,
5))i
}

private Observer observer = new Observer() {
public void update(Observable observable, Object o)

updateStatus((StatusObject) o);
}i

private void updateStatusToReady() ({
updateStatus (StatusObject.STATUS READY);

}

private void updateStatus(£final StatusObject
statusObject) {
Runnable runnable = new Runnable() {
public void run() {

statusBar.setText(statusObject.getStatusText());
if (statusObject.hasTimer()) {
new Thread(new Runnable() {
public void run() {

try {
synchronized (this) {

this.wait(statusObject.getTimer() * 1000);

}
updateStatusToReady () ;

} catch (InterruptedException

e) {

cancer Biomedical Informatics Grid 275

e.printStackTrace();

}
}
}).start();
}
}
}i
if (SwingUtilities.isEventDispatchThread()) {
runnable.run();
} else {
try {
SwingUtilities.invokeAndWait (runnable);
} catch (InterruptedException e) {
e.printStackTrace();
} catch (InvocationTargetException e) {
e.printStackTrace();
}
}
}
public void removeUpdate(DocumentEvent event) ({
updateButtons();
}
public void changedUpdate(DocumentEvent event) {
}
public static void main(String[] args) {
SwingUtilities.invokeLater (new Runnable() {
public void run() {
final SwingCaBIO swingCaBIO = new
SwingCaBIO();

swingCaBIO.init();

})i

Coding JcaBIO: The CaBIOReportEngine Class

In order to provide information on what the report engine is doing while
it is generating the report, the CaBIOReportEngine class extends
java.util.Observable to send notification to all observers about the
status of the generation of the report.

public class CaBIOReportEngine extends Observable { }

The constructor for the class takes a
gov.nih.nci.system.applicationservice.ApplicationService

276

object that retrieves further information during report generation as
needed.

CaBIOReportEngine contains a number of print methods in order to
generate the reports. These methods print specific information about the
gene or agent (that the user supplied) into the stringBuffer object. The
printGene() method takes two parameters to generate the report — the
gene object and the StringBuffer object which will contain the
information to be included in the report:

public void printGene(Gene gene, StringBuffer sb) { }

Within the printGene() method, we implement methods provided by
the caBIO API such as getFullName(), getSymbol() and
getClusterId() to access the relevant information about the input gene.

The printPathways() method takes the same two parameters to
generate the pathways report:

public void printPathways(Gene gene, StringBuffer sb) ({

Information on pathways is obtained as a collection of pathway objects
using the method search() from the application service object
appservice. The search() method requires two parameters - the type of
the object we want in the collection result and the gene we need the
pathways for as shown below:

final Collection tmp =
appService.search(Pathway.class, gene);

Similarly, we use print methods to retrieve information on gene aliases
(printGenealiases()), clinical trials (printClinicalTrials()), Agent
(printAgent()) etc. The complete code for caBIOReportEngine is
provided in Listing 6.2.

Listing 6.2. Class CaBIOReportEngine
package org.Jjfb.jcabio;

import gov.nih.nci.cabio.domain.Agent;

import gov.nih.nci.cabio.domain.ClinicalTrialProtocol;
import gov.nih.nci.cabio.domain.Gene;

import gov.nih.nci.cabio.domain.GeneAlias;

cancer Biomedical Informatics Grid 277

import gov.nih.nci.cabio.domain.GeneOntology;

import gov.nih.nci.cabio.domain.HomologousAssociation;
import gov.nih.nci.cabio.domain.Pathway;

import gov.nih.nci.cabio.domain.Protein;

import gov.nih.nci.cabio.domain.Target;

import java.text.SimpleDateFormat;
import java.util.Collection;
import java.util.Iterator;

import java.util.Observable;

public class CaBIOReportEngine extends Observable {
private static final SimpleDateFormat DATE_FORMATTER
new SimpleDateFormat("yyyy.MM.dd G 'at' HE:mm:ss z");
private static final StatusObject STATUS REPORT_ DONE
new StatusObject("Report done!");

il

private ApplicationService appService;

public CaBIOReportEngine (ApplicationService appService)

{
this.appService = appService;
}
public void printGene(Gene gene, StringBuffer sb) {
sb.append("Name: " + gene.getFullName());
sb.append("\n-Symbol: " + gene.getSymbol());
sb.append("\n-Unigene Cluster Id: " +
gene.getClusterId());
}
public void printPathways(Gene gene, StringBuffer sb) {
notifyObservers(new StatusObject ("Printing the
pathway report for gene '" + gene.getFullName() + "'..."));
try {
final Collection tmp =

appService.search(Pathway.class, gene);
final int size = tmp.size();
if (size == 0) {
sb.append("Gene not found in any
pathways.");
notifyObservers(STATUS_REPORT_DONE) ;
return;
}
sb.append(size + " pathway(s) found: \n");
Pathway([] pathways = new Pathway[size];
tmp.toArray(pathways);
for (int i = 0; i < pathways.length; i++) {
Pathway pathway = pathways[i];
sb.append("\t-Pathway name: " +
pathway.getName());
sb.append("\n\t-Description:
pathway.getDisplayValue());

278

sb.append("\n\t-Pathway Map:
http://www.biocarta.com/pathfiles/" + pathway.getName() +
L .asp") ;
if (i + 1 < pathways.length) {
sb.append("\n");

}
}
} finally {
notifyObservers(new StatusObject("Pathway
report done for gene '" + gene.getFullName() + "'1"));
}
}
public void printGeneAliases(Gene gene, StringBuffer
sb) {
notifyObservers(new StatusObject("Printing the gene
alias report for gene '" + gene.getFullName() + "'..."));
try {
final Collection tmp =

appService.search(GeneAlias.class, gene);
final int size = tmp.size();
if (size == 0) {
sb.append("No gene aliases found.");
notifyObservers(STATUS_REPORT_ DONE) ;

return;
}
sb.append(size + " gene aliases found: ");
GeneAlias[] geneAliases = new GeneAlias[size];

tmp.toArray(geneAliases);
for (int i1 = 0; i < geneAliases.length; i++) {
GeneAlias geneAlias = geneAliases[i];
sb.append(geneAlias.getName());
if (i + 1 < geneAliases.length) {
sb.append(", ");
}

}
} finally {
notifyObservers(new StatusObject("Gene alias

report done for gene '" + gene.getFullName() + "'!"}));
}
}
private void printAgent(Agent agt, StringBuffer sb) {
sb.append("Drug Agent Name: " + agt.getName());
final String source = agt.getSource();
sb.append("\n-Agent Source: " + (source != null ?
source : "Unknown"));

}

public void printGenes(Target target, StringBuffer sb)

{
notifyObservers(new StatusObject("Printing the gene
report for target '" + target.getName() + "'..."));

cancer Biomedical Informatics Grid 279

try {
final Collection tmp =

appService.search(Gene.class, target);
final int size = tmp.size();
if (size == 0) {
sb.append("No genes found.");
notifyObservers(STATUS_ REPORT_DONE) ;
return;

}

sb.append(size + " gene(s) found: ");

Gene[] genes = new Gene[size];
tmp.toArray(genes);
for (int i = 0; i < genes.length; i++) {
Gene agt = genes[il];
printGene(agt, sb);
if (i + 1 < genes.length) {
sb.append("\n");

}
}
} finally {
notifyObservers(new StatusObject("Gene report
done for gene '" + target.getName() + "'!"));
}
}
public void printClinicalTrials(Agent agt, StringBuffer
sb) {
notifyObservers (new StatusObject ("Printing the
clinical +trial report for agent '" + agt.getName() +
"))
try {
final Collection tmp =

appService.search(ClinicalTrialProtocol.class, agt);
final int size = tmp.size();
if (size == 0) {
sb.append("No clinical +trials found for
agent.");
notifyObservers (STATUS_REPORT_DONE) ;
return;
}
sb.append(size + " clinical trial(s) found: ");
ClinicalTrialProtocol[] <c¢linicalTrials = new
ClinicalTrialProtocol[size];
tmp.toArray(clinicalTrials);
for (int 1 = 0; i < clinicalTrials.length; i++)

{

ClinicalTrialProtocol clinicalTrial =
clinicalTrials([i]);

sb.append("\n\nTitle: " +
clinicalTrial.getTitle(});

sb.append("\n~Status: " +

clinicalTrial.getCurrentStatus());

280

sb.append("\n-Date: " +
DATE_FORMATTER.format(clinicalTrial.getCurrentStatusDate()));

sb.append("\n-Lead Organization Name: " +
clinicalTrial.getLeadOrganizationName());

sb.append("\n-Phase: " +
clinicalTrial.getPhase());

sb.append("\n-Participation Type: " +

clinicalTrial.getParticipationType());
if (1 + 1 < clinicalTrials.length) {
sb.append("\n");

}
}
} finally {
notifyObservers(new StatusObject("Clinical
trial report done for agent '" + agt.getName() + "'!"));
}
}
public void printGeneOntology(Gene gene, StringBuffer
sb) {
notifyObservers(new StatusObject("Printing the gene
ontology report for gene '" + gene.getFullName() + "'..."));
try {
final Collection tmp =

appService.search(GeneOntology.class, gene);
final int size = tmp.size();
if (size == 0) {
sb.append("No associated GO terms found.");
notifyObservers (STATUS REPORT_DONE) ;

return;
}
sb.append(size + " GO Term(s) found: ");
GeneOntology[] geneOntologies = new

GeneOntology[size];
tmp.toArray(geneOntologies);
for (int i = 0; i < geneOntologies.length; i++)
{
GeneOntology geneOntology =
geneOntologies[i];
sb.append(geneOntology.getName());
if (i + 1 < geneOntologies.length) {
sb.append(", ");
}

}
} finally {
notifyObservers(new StatusObject("Gene ontology
report done for gene '" + gene.getFullName() + "'!"});
}
}

public void printProteins(Gene gene, StringBuffer sb) {
notifyObservers(new StatusObject("Printing the
protein report for gene '" + gene.getFullName() + "'..."));

cancer Biomedical Informatics Grid 281

try {
final Collection tmp =

appService.search(Protein.class, gene);
final int size = tmp.size();
if (size == 0) {
sb.append("No proteins found for " +
gene.getFullName() + ".");
notifyObservers(STATUS_REPORT_DONE);
return;

sb.append("Protein name: ");

for (Iterator iterator = tmp.iterator();
iterator.hasNext();) {
Protein protein = (Protein)

iterator.next();
sb.append(protein.getName());
if (iterator.hasNext()) {
sb.append(", ");

}
}
} finally {
notifyObservers (new StatusObject("Protein
report done for gene '" + gene.getFullName() + "'1"));

}
}

public void printGenes(Agent agent, StringBuffer sb) {
notifyObservers(new StatusObject("Printing the gene
report for agent '" + agent.getName() + "'..."));

try {
final Collection tmp =

appService.search(Target.class, agent);
final int size = tmp.size();
if (size == 0) {

sb.append("No targets found for " +
agent.getName() + ".");

notifyObservers(STATUS_REPORT DONE);

return;

}

sb.append(size + " targets found: ");
Target[] targets = new Target[size];
tmp.toArray(targets);
for (int i = 0; i < targets.length; i++) {
Target target = targets[i];
printGenes(target, sb);
if (i + 1 < targets.length) {
sb.append("\n");
}

}
} finally {
notifyObservers(new StatusObject("Gene report
done for agent '" + agent.getName() + "'!"));

}

282

}

public void notifyObservers(Object o) {
setChanged();
super.notifyObservers(o);

}

public void printFullGeneReport(Gene geneFound, final

StringBuffer sb, int paragraphNumb) {

sb.append(paragraphNumb + ". ");

printGene(geneFound, sb);

sb.append("\n-");

printGeneOntology(geneFound, sb);

sb.append("\n-");

printProteins(geneFound, sb);

sb.append("\n-");

printGeneAliases (geneFound, sb);

}

public void printGenePathwayReport (Gene geneFound,
final StringBuffer sb, int paragraphNumb) {
sb.append(paragraphNumb + ". ");
printGene(geneFound, sb);
sb.append("\n-");
printPathways (geneFound, sb);
}

public void printGeneAgentCliTriReport(Agent agent,
final StringBuffer sb, int paragraphNumb) {

sb.append(paragraphNumb + ". ");

printGenes(agent, sb);

sb.append("\n-");

printAgent(agent, sb);

sb.append("\n-");

printClinicalTrials(agent, sb);

Coding JcaBlO: The CaBlIOSearchEngine Class

CaBIOSearchEngine extends Observable to notify observers about what
the search engine is doing so we can keep the users of the application
informed about the status of the search. As described earlier, we provide
two search capabilities in the swingcaBIo application: one to create a Gene
report and one to create an Agent report. We will call the Gene search
method searchGenesWithGenePattern() and the agent search method
searchAgentsWithAgentPattern() respecﬁvebh

cancer Biomedical Informatics Grid 283

The constructor for the class takes a
gov.nih.nci.system.applicationservice.ApplicationService

object that helps to run the initial search. Based on the caCORE API, we
create an object called GeneCriteria and set the gene name with the
pattern we're looking for. We run the ApplicationService and supply it
with the object we need to retrieve. We then collect all the genes that
match the input criteria and return the result in an array of Gene objects.

As with the searchGenesWithGenePattern() method,
searchAgentsWithAgentPattern() returns an array of Agent objects
found. The complete code for the caBIOSearchEngine class is provided
in Listing 6.3.

Listing 6.3. Class CaBIOSearchEngine
package org.jfb.jcabio;

import gov.nih.nci.cabio.domain.Agent;

import gov.nih.nci.cabio.domain.Gene;

import gov.nih.nci.cabio.domain.GeneAlias;

import gov.nih.nci.cabio.domain.impl.AgentImpl;

import gov.nih.nci.cabio.domain.impl.GeneAliasImpl;

import
gov.nih.nci.system.applicationservice.ApplicationService;

import java.util.ArrayList;

import java.util.Collection;

import java.util.List;

import java.util.Observable;

public class CaBIOSearchEngine extends Observable {

private static final StatusObject STATUS_SEARCH DONE =
new StatusObject("Search done!");

private ApplicationService appService;

public CaBIOSearchEngine(ApplicationService appService)

{
this.appService = appService;
}
public Genel[] searchGenesWithGenePattern(String
geneNamePattern) throws SearchException {
try |
notifyObservers (new StatusObject("Starting
search with gene pattern '" + geneNamePattern + "'..."));

List resultlList = appService.search(Gene.class, gene);
Gene[] genes = new Gene [resultList.size()];
resultList.toArray(genes);

284

notifyObservers(STATUS_SEARCH _DONE) ;
return genes;
} catch (Throwable e) {
notifyObservers (new StatusObject ("An error
occured while searching for genes using gene pattern '"
+ geneNamePattern + "'1", 10));

wn

throw new SearchException(, e);

}

public Agent]] searchAgentsWithAgentPattern(String
agentPattern)
throws SearchException {
try {
notifyObservers(new StatusObject("Starting
search with gene pattern '" + agentPattern + "'..."));
Agent agentCriteria = new AgentImpl();
agentCriteria.setName(agentPattern);
List resultList = appService.search(Agent.class,
agentCriteria);
Agent[] agents = new Agent[resultList.size()];
resultList.toArray(agents);
notifyObservers (STATUS_SEARCH_DONE) ;
return agents;
} catch (Throwable e) {

notifyObservers (new StatusObject("An error
occured while searching for agents with gene pattern '"
+ agentPattern + "'..."));

throw new SearchException(e);

}

public void notifyObservers(Object o) {
setChanged();
super.notifyObservers(o);

SearchException and StatusObject respectively provide mechanisms
to handle errors that occur during the search process and provide the user
with messages on the status of the search. The code for these two classes is
provided in Listing 6.4 and Listing 6.5 below.

Listing 6.4. Class SearchException

package org.jfb.jcabio;
public class SearchException extends Exception ({
private Throwable embedded;

public SearchException(String s, Throwable throwable) {

cancer Biomedical Informatics Grid

285

super(s, throwable);
this.embedded = throwable;
}

public Throwable getEmbedded() {
return embedded;

}

Listing 6.5. Class StatusObject
package org.jfb.jcabio;

public class StatusObject {
private static final int NO_TIMER = 0;
private static final String STATUS_TEXT

"Ready!";

public static StatusObject STATUS_READY
StatusObject(STATUS_TEXT, NO_TIMER});

new

private String statusText;
private int timer;

public StatusObject(String statusText, int timer) {
this.statusText = statusText;
this.timer = timer;

}

public StatusObject(String statusText) {
this.statusText = statusText;
timer=NO_TIMER;

}

public String getStatusText() {
return statusText;

}

public int getTimer() {
return timer;

}

public boolean hasTimer() {
return timer != NO_TIMER;
}

286

Running the JcaBIO Application

As described in Table 6.4, among the caBIO domain objects, the gene
object serves as central hub of the basic research objects and provides
access to object such as organs, diseases, chromosomes, pathways,
sequence data, etc. To begin with, therefore, we will create a Gene report
using the JcaBIO application. Fig. 6.4 shows the results of a gene report
conducted to search for genes named “erb”. Note that wild-cards (*) can
be used for retrieving information on genes. In this case, for example, we
have performed a search with erb* which as the report indicates has
identified genes called “v-erb-b2 erythroblastic leukemia viral oncogene
homolog 3 (avian)”, with the approved Human Gene Nomenclature
Committe (HGNC) gene symbol ERBB3 and “‘v-erb-b2 erythroblastic
leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene
homolog (avian)” with the approved HGNC gene symbol ERBB2, both of
which are members of a family of growth factor receptor genes called
epidermal growth factor receptors (EGFR).

Fig. 6.5 displays the results of a pathway search for the keyword erb*.
The search identifies three genes that match the input keyword erb*:
ERBB2, ERBB3 and ERBB4, the corresponding pathways the three genes
are involved in and a link to the graphical representation of the pathways
on the BioCarta website for each (as shown in Fig. 6.6 for ERBB2).

cancer Biomedical Informatics Grid 287

Gene erb®

Number of results: [10
Drug Agent | |

Run a Gene Search || Run a Gene/Pathway Search Run an Agent Search || Clear Report |
\Search Results for ‘erb™' (3 gene(s) found):

1. Mame: V-erb-b2 erythroblastic leukemia viral gene homolog 3 {avian)
-Symbol: ERBB3
-Unigene Cluster Id: 118681
-12 GO Term(s) found: protein kinase activity, protein-tyrosine kinase activity, transmembrane
receptor protein tyrosine kinase activity, receptor activity, epidermal growth factor receptor
jactivity, ATP binding, integral to plasma membrane, protein amino acid phosphorylation,

p P kinase si P ay, o
transferase activicy
-Protein name: Receptor tyrosine-protein kinase erbB-3 precursor
-2 gene aliases found: erbb3, ERBE3

2. Name: V-erb-bZ erythroblastic leukemia viral oncogens homolog 2, neuro/glicblastoma derived
loncogene homolog (avian)

-Symbol: EREBZ

-Unigene Cluster Id: 446352

=22 GO Term(s) found: protein kinase activity, protein serine/threconine kinase activity,

protein-tyrosine kinase activity, tr ane p protein kinase activivy,
mon P gp kinase activity, receptor signaling protein tyrosine
kinase activity, receptor activity, epidermal growth factor P activity, elect
transporter activity, iron ion bind ATP bindi llular region, electron Cransport,

protein emino acid phosphorylation, enzyme linked receptor protein sigmaling pathway,
transmembrane receptor protein tyrosine kinase signaling pathway, cell proliferation, membrane,
integral to membrane, kinase activity, transferase activity, ErbB-3 class receptor binding
-Protein name: Receptor tyrosine-protein kinase erbB-2 precursor

-2 gene aliases found: erbb2, ERBBZ

Ready!

Fig. 6.4. Gene report for erb*

o e Number of results: [10

Run a Gene Search || Run a Gene/Pathway Search || Run an Agent Search || Clear Report I

(Search Results for ‘erb*' (3 gene(s) found): =

1. Hame: V-erb-b2 erythroblastic leukemia viral h 1 3 (avian)
-3ymbol: EREB3
=Unigens Cluster Id: 118681
-2 pathway(s) found:
y name: h Erhl ¥
on: in 1 Controls ErbB3 receptor recyclin
-Pathway Map: http://www.biocarta.com/pathfiles/h_ErbB3Pathway.asp
-Pathway name: h_herZPathway
=Description: Role of EREBZ in Signal Tranaduction and Oncology
-Pathway Map: http://fwww, /pathfiles/h_herZPathway. asp

2. Wame: V-erb-b2 ery lastic leukemia wiral -t 1 2, neuro/glioblastoma derived
joncogens homolog (avian)
-3ymbol: EREBZ
=Unigens Cluster Id: 446352
-2 pathway(s) found:
y name: h b 1y
-Description: Role of ERBBZ in Signal Transduction and Oncology
=Pathway Map: http://www.biocarta.com/pathfiles/h_her2Pathway.asp
-Pathway name: h_tffPathway
=Description: Trefoil Factors Initiate Mucosal Healing
-Pathway Map: http:/Sfwww, /pathfiles/h_! asp

Reaciyt

Fig. 6.5. Pathway report for erb*

288

=
BIOCARTA
a5

[

FAOULT i

SHEOULT BN
[+ el

Contvns B bnaat

[an T e —
FALEULT TRGHLHT
Som o Ooer

RGTMART

SEQULLE A CATAET

Fig. 6.6. Graphical representation of an ERBB2 pathway in BioCarta

Next we will perform a therapeutic agent search for a well-known anti-
cancer agent called Taxol. Fig. 6.7 displays the results of a wild-card search
performed with the term TAX*. As expected, the search resulted in reports
on Taxol, a compound present in the bark of the Pacific yew tree (Taxus
brevifolia), which was later found to possess anti-cancer properties and
approved for the treatment of ovarian, breast and non-small cell lung
cancer. The report also presents detailed information on the many clinical
trials that are being conducted using Taxol providing such details as the
name of the study, its status, the organization conducting the study, Phase
of the clinical trials and so on.

cancer Biomedical Informatics Grid 289

< SwingCaBlo [[E0E

Gene [|

Number of resuits: |10
Drug Agent [TAX™

e soorch || Runan Agent Search || Clear Report
Search Results for 'TAX®' (Z agent(z) found):

1D

1. Mo targets found for TAXOL (OLD N3C).
-Druy Agent Name: TAXOL (OLD NSC)
—Agent Source: Unknown

-100 clinical trial(=a) found:

Title: Phase I study of S0Y-CC49 Monoclonal Antibody Therapy in patients with Advanced Non-Smmall
Cell Lung Cancer

-3tatus: Complete

-Dace: 2001.06.06 AD act 00:00:00 EDT

-Lead Organization Name: University of Alabams at Birmingham

-Phase: I

-Participation Type: Cancer Center

[Ticle: A randomized Phase IIT trial of sequential chemotherapy using doxorubicin, paclivaxel, and
jcyclophosphamide or concurrent doxorubicin and cyclophosphamide followed by paclitaxel at 14 or
;21 day intervals in women with node pozitive.......

~Zraruz: Complete

-Date: Z003.06.30 AD at 00:33:45 EDT

-Lead Organization Name: Cancer and Leukemia Group B

-Phase: III

-Participation Type: Intergroup

Readyl

Fig. 6.7. Therapeutic agent report for Taxol

Summary

The NCI caBIG™ initiative is ushering a new era in cancer research by
providing scientists with standardized tools to access and share
information with one another overcoming cultural, geographical and
technological barriers in ways not conceivable just a few years earlier.

In this chapter, we learnt about the rationale behind the creation of
caBIG™ and the technologies that are being created or developed under
the initiative to enhance the pace of cancer research. We created a very
basic application to demonstrate a few of the many ways in which NCI’s
caCORE and caBIO domain objects can be used to retrieve information on
biomedical objects in a way that bridges basic and clinical research.
Needless to say, caCORE offers many more capabilities than what we
have attempted to demonstrate and we encourage readers to take these
small examples as a springboard to gain a better understanding of the
power of the technology and build more complex queries as dictated by
their individual research needs.

290

The power of the caBIG™ concept is uniting cancer researchers across
the world. A similar initiative was launched by the UK National Health
Service (NHS) for the development of cancer research informatics in that
country through a strategic partnership with the NCICB on the caBIG™
effort. Both the initiatives will work together to build a truly global
infrastructure for cancer research. These are indeed very exciting times for
biomedical and clinical research and it is hoped that the joint efforts of
people across the world will eventually lead to the demise of the scourge
that we are battling.

As a living testimony of the work being done in this area, the NCI was
recently awarded the 2006 Computerworld Honors 21st Century
Achievement Award for Science for their accomplishment under caBIG™
Program. The Computerworld Honors Program was established to honor
people or institutions who apply Information Technology for the benefit of
society. Further information on the award is available at
http://www.cwhonors.org/archives/2006/index.htm and
https://cabig.nci.nih.gov/News_Folder/NCI_award.

Questions and Exercises

1. The NCICB has launched the Open Development Initiative (ODI,
http://ncicb.nci.nih.gov/NCICB/infrastructure/open_dev_initiative) as
an opportunity for biomedical researchers and bioinformaticians to
contribute to on-going development efforts in the cancer domain.
Explore the caBIO, caCORE and other ODI’s of interest to you and
think of ways you can participate in this effort.

2. The observation that, “Gene and/or protein X is significantly
overexpressed in a specific cell population, tissue and/or in a
laboratory model of disease Y” is that fundamental first indication of
evidence that feeds hypothesis driven research into the biology and
treatment of disease.

a. What caBIO objects would you need to establish a causative
link between biomolecules expressed in specific tissues (for
example, cerebral cortex) and disease (for example,
Alzheimer’s disease)?

cancer Biomedical Informatics Grid 291

b. How would you extend the query to identify pathways that the
biomolecules participate in and discover known chemical
agents that selectively inhibit or modify events along the
pathways?

c. Which caCORE data stores would you mine for such
information?

d. Given that the ultimate aim of caBIG™ is to make biomedical
and clinical data accessible via the grid, how would you
design an application to take the information obtained above
to locate appropriate tissue samples, patient cohorts and on-
going clinical trials for further analysis and validation studies?
What technical and non-technical issues would you need to
address to build such an application?

e. Create an application expanding available caBIG™
technologies and data stores that will allow users to run such
queries.

Additional Resources

Select NIH/NCI resources

caBIO - http://ncicb.nci.nih.gov/core/caBIO

caCORE - http://ncicb.nci.nih.gov/NCICB/infrastructure
CaDSR - http://ncicb.nci.nih.gov/core/caDSR

CaMOD - http://cancermodels.nci.nih.gov

CMAP - http://cmap.nci.nih.gov

CTEP - http://ctep.cancer.gov/

CGAP - http://cgap.nci.nih.gov/

CGAP GALI - http://gai.nci.nih.gov/

EVS - http://ncicb.nci.nih.gov/core/EVS

GEDP - http://gedp.nci.nih.gov

292

* MMHCC - http://mouse.ncifcrf.gov/

* NCI metathesaurus - http://ncimeta.nci.nih.gov/

* NCI thesaurus - http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do

* UniSTS - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unists

Other biomedical repositories and resources

* BioCarta pathways - http://www.biocarta.com/

* Gene Ontology Project - http://www.geneontology.org/

* IMAGE Consortium - http://image.llnl.gov/

Standards and protocols

* ISO/IEC - http://www.standardsinfo.net/isoiec/index.html

* ISO/IEC 11179 standard - http://metadata-standards.org/11179/
* SOAP - http://www.w3.org/TR/soap/

ETL tools

* Kettle - http://www kettle.be/

* Octopus - http://www.enhydra.org/tech/octopus/index.html

Selected Reading

The caCORE Software Development Kit: streamlining construction of
interoperable biomedical information services. Phillips J, Chilukuri R,
Fragoso G, Warzel D, Covitz PA. BMC Med Inform Decis Mak. 2006 Jan

6;6:2.

cancer Biomedical Informatics Grid 293

Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H,
Gustafson S, Buetow KH. caCORE: a common infrastructure for cancer
informatics. Bioinformatics. 2003;19:2404-2412,

Database resources of the National Center for Biotechnology Information.
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V,
Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Helmberg W,
Kapustin Y, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott
DR, Ostell J, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherry ST,
Sirotkin K, Souvorov A, Starchenko G, Suzek TO, Tatusov R, Tatusova
TA, Wagner L, Yaschenko E. Nucleic Acids Res. 2006 Jan 1;34(Database
issue):D173-80.

Appendix

Apache Ant and Tomcat

A web app needs to be deployed on a web application server in order to
be accessible through a web browser. We will use Tomcat - a free, open-
source implementation of Sun’s Java Serviet and JSP technologies
developed under the Jakarta project at the Apache Software Foundation
(http://www.apache.org/) — for this purpose. Building refers to the process
of creating a WAR file from the application. Deploying the web app means
the installation of the WAR file on the web app server (Tomcat). This is
accomplished with the help of a make tool called Ant that is portable
across platforms, and developed by the Apache Software Foundation.
Apache Ant and Tomcat are both available from the Apache Ant and
Tomcat Software Foundation web site respectively. We begin with the
installation and configuration of the development tools - the Apache
Tomcat server, and, the Apache Ant build tool that we need to create our
application.

Downloading the Apache Tomcat server

Navigate to http://jakarta.apache.org/tomcat/ and click on Binaries under
Downloads along the left bar (Fig. A.1).

296

La Site - Apa

He B Vew Lo Dookraks [eok Hebp o]
& - |:> 5 @ |}:” @ | ot ttaharta, et v ghumats = lic
By vaboc! Greups | #2004 Fies | C1socte-pec s . The Jokorta Site - Apache Jakarta T.. | (]

Wpache Jakarta Project
http:// jakarta.apache.org/f

Join Us At ApacheCon 13-17 November 2004 in Las Vegas, Nevada, USA

Tomeat
F: Apach 118 4 GnCe-in-a-year opportunty to learn about Apache projects and meet old and
2 new fmends m the Apache comemurnty.
* Jakarta will be well represented together with the wider Apache Tava community. The number of
* ASF projects Bely to be of mierest to JTava developers has never been higher: so i you'r= never
.

soined ug before, there's never been a better time to start the nabitl

Tomest is the serviet containes that is used in the official Refesence Implementation for the Java
Sendet and JavaServer Fages technologies. The Java Servet and JavaServer Pages spectficahons
are developed by Sun under the Java Commucity Process.

Tomeat is developed o an epen and parhciparery envrcnment and released under the Apache
Eoftware Licenze, Tomeat is intended to be a collaboration of the best-of-breed developers from
around the world We mwte you to participate in thic open development project. To leam more

Apache Jakarta Tomcat

il

Fig. A.1. The Apache Tomcat Projects web page

This will take you to the Binary Downloads page (Fig. A.2).

3 The lakarta Site - Rinary Downloads - Microsaft Intornet Fxplarer

Be ER Yew Fawdks Tk fep 3
Q- O [@G Lo firees P @ 3- 5 B L) F
adorest |] ap jfiwearta soacte orgiute e nde o ¥ o s ™
[o o —— L TR T T T T

-

Wpache Jakarta Project
http:// jakarta.apache.org/
Abot Jakta

We make bmasy versions of owr code for the corvenience of cur users. In general, bxases we wemnt for
developers who waet to use the Serviet and JavaServer Pages technelogies (versus those who was to "hack”
the techmeloges m order to mtegrate thems mito other products)

Deperiding on what kind of wer you are, poull want to use a particulsr type cfbuld We donde our avadable
binanes o the fllowmg categonies

» Relense Bulds
= Milestone Budds
o Higitly Bualds
» Deme Bulds

Release Builds are those that are reasy for Prize Tene. Tiis badd is "as good as 2 getal’

M Builds sre those that sre somewkat stable but not erystal-clean We have soms corfidence m
them, bt they are buggy and should ondy be cred by advanced users who want to explore fiture procuct
drection or take advantage of new Datures, For developers, these budds serve as a mechanim fo track
progress towards a release

Bl (ol n dynancte(), We have no corfdenze m them They are
s PR Yol e

Nightly Builds are those that ase very ues

Fig. A.2. The Apache Binary Downloads page

Appendix 297

Scroll down to where it says, “Tomcat 5.0.19” (at the time of this
writing) and click on jakarta-tomcat-5.0.19.exe. This will download
Tomcat-5.0.19 on your computer. Double-clicking on the downloaded file
will open the Apache Tomcat Setup Wizard that will lead you through the
installation process. For this installation, we are going to choose the
C:\Program Files\Apache Software Foundation\Tomcat 5.0 directory.
During the installation, you will be prompted to select a connector port and
a password. Keep the port at 8080 and select a password of your choice
and hit Next (Fig. A.3).

ES Apache Tomcat Setup: Configuration Options

Configuration
Tomcat basic configuration,

HTTP{1.1 Connector Port 8080]

Administrator Login

User Mame | adrmin
Password |l.
< Back “ Next > I [Cancel

Fig. A.3. Apache Tomcat setup

You will also be prompted to enter the location of your JDK (Java
Development Kit) installation because the Apache Tomcat Server is written
100% in Java and uses the compiler (provided in the development kit) to
compile the JSP at runtime (Fig. A.4).

298

ES Apache Tomcat Setup: Java Virtual Machine path selection

Java Vitual Machine m
Java Virtual Machine path selection. L

Please select the path of the VM installed on your system:

Crijzsdkl 4.2_03 ! [.i:d

I < Back JL Install] L Caneel J

Fig. A.4. Apache Tomcat setup

Pressing Install will take you through the rest of the installation process.
At the end of the installation, you will be able to start the server through
the last screen by selecting the “Run Apache Tomcat” option (Fig. A.5).

B3 Apache Tomcat Setup El = rZ|

Completing the Apache Tomcat
Setup Wizard

Apache Tomcat has been installed on your computer.

Click Finish ta close this wizard.

pache

D Show Readme

Fig. A.5. Finishing Apache Tomcat Server installation

Appendix 299

Pressing Finish will start the server and you will see the “Tomcat
Webserver” splash screen for a few moments as the server starts up (Fig.
A.6).

The !_\pache Jakarta Project

TR VLS R
&

You may also see a small icon on your Windows Task Bar at the bottom
right indicating that the server is up and running (Fig. A.7).

=

Fig. A.6. Tomcat Web App Server splash screen

Fig. A.7. Tomcat start and shutdown icon

You can open the Console Monitor by right-clicking on the icon and
selecting the “Open Console Monitor” option. This opens a window
listing out a log of the events that took place during start-up. You can
shutdown the server by selecting the “shutdown:Tomcat5” option. This
removes the icon from the Windows Task Bar. To see the server in action,
open up a browser window, type http://localhost:8080 in the address
bar and hit enter. This should open up the Tomcat home page and means
that you have configured the server successfully (Fig. A.8).

300

A Apache Tomcat/5.0,19 - Microsolt Infernet Explorer =13
Fla Edt Vew Favokes Jook Hebp 3

[
ftess |] ip:ffocabost 0080 . >

@nu‘: - J - L"J [ﬂ .dj ;\‘ Search '\;::E'leﬂ) teda e\ . _‘) i_; 3

Lirks ™

-

Apache 1
Tomeatis.0.19 wmche Jakarta Project
http://f jakarta.apache.org/:

It you're seeing this page via a web browser, it means you've
setup Tomcat successfully. Congratulations!

As you may have guessad by now, this is the dafault Tomcat homea
page. It can ba found on the local filesystem at

SCATALINA_HOME/webapps/ROOT/index. jsp

where "SCATALINA_HOME" is the root of the Tomcat installation
directory. If you're seeing this page, and you don't think you should be,
then either you're either a usar who has amved at new installation of
Tomcat, or you're an administrator who hasnt got hisfher setup quite
right. Providing the latter 15 the case, please refer to the Tomcat

< ; 3 3 : R

Yiocarirmet

Fig. A.8. Testing Apache Tomcat Server on localhost

From this page, clicking on Tomcat Administration will take you to the
Tomcat Webserver Administration page (Fig. A.9).

-2 Tomcat Server Administration - Microsoft Internet Explorer
Fle Edt View Favortes Tools Help

Oui- O K @B Lo frrmmn @rn @ 35

-E]M.'Irbcalw;ai"w : v ked 60

 ADMINISTRATION
' R ol |

T

pa—
—]

(Lo]

Fig. A.9. The Apache Tomcat Webserver Administration page

Appendix 301

Enter the username and password you selected earlier to login (Fig.
A0, admin and admin, in our case).

A Tomcat Server Administration - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

O - @ .ﬂ i.“ _.[J x”‘search .7 Favertes (@ veda {2 :_.'j_*

clcecs |) bitpe flocabost: 8080/ adminf

ADMINISTRATION
T 0 0 L

User Name
o

oo [oot

£&] pore % Local ntranet

Fig. A.10. Tomcat Web Server log in

At this point you should see the Tomcat Web Server Administration
Tool (Fig. A.11). The Tomcat Web Server Administration page essentially
allows you to administer the server, that is, take care of issues such as
assigning users, setting user roles (admin, manager etc) and privileges, also
checking the services, resources and so on. For example, under
Tomcat/Service/Host, the list of all the web app available on this server is
displayed.

302

A Tomcal Server, Administration - Microsoft Internet Explorer |:|@i[z|
Ble Edt Vew Favorkes Ioos Hep ar

Qo - © DA G Do Lo @ @ @3- %3

#ddress | @] http:/flocalhost:8380/adminjframeset. jsp

Tnrarar Wre CSroiurrp

ADMINISTRATION TooL

[Commi:Changes — JMN Log Ou |

@ & Tomcat Server
% service (Catalina)

@ CResources

8 Data Sources

= Mail Sessions

L% Erpironment Entries

& User Databases
¢ EUser Definition

® Users

% Groups

Roles

&] Done &J Local intranet

|

Fig. A.11. The Tomcat Webserver Administration Tool

Managing the Apache Tomcat Server

Let’s create a new user called manager, enter a password and a Full
Name (Tomcat Manager, this is an arbitrary string) and assign this user the
role of a manager by checking the “Manager” check box under Role Name
(Fig. A.12).

Appendix 303

3 Tomcat Server Administration Microsofi Infernet Fxplores

Be [e Fparts Jwh fep >
Q- O HEAG Pueo forems @ @ 2- %= LB
e |1 M1 ol SOSD e Tamanel |1 L
Googe - v Ehsewchwet + @ 50 wbboed Ao | g opens S
Tamear Wer Cepiten
ADMINISTRATION TooOL
_ . =
9 ™ Tarce: Servar Create New User Properties User Actions m
oW Survce (Catalna)
9 CResources [aw] Rese:
@ Cata Souees = =
Bt S S
£ Emdrorment Ertres Ui = = .
‘le'nllﬁlslﬁ R TN L
@ D wur Defnition | Password
Users
| I
” Giow Full Name:
* Folzs
| O tomest
e
it — — — —— = N
a e L

Fig. A.12. Assigning a new user

Pressing Save will add the user to the profile. Now lets try to login as
manager by clicking Tomcat Manager. This will bring on the login
window. Enter the username and password you just created and press OK
(Fig. A.13).

Connect to localhost

Tomcat Manager Application

User name: 1 | v ‘

Password:] |

[Iremember my password

l OK][Cancel]

Fig. A.13. Tomcat Manager Application login

304

This will open up the Tomcat Web Application Manager (Fig. A14).

3 tmanager Micresofl Internet Explorer

Bn [t gew Fowrtes Dok Heb [
Om- O B EG Do froe @ @2 BEL B

s [it ok €080l B Ee i
Coogle - v Whcewchwer = @ & ubbosd 0 W cemns #

Wpache Jakarta Project
http:// jakarta.apache.org/

Tomcat Web Application Manager

Message: [

=Sl ADDicaong | HIML Manager Halp bdgneqger Help Setver Slalys
|Path |thlq Hamao Running Sesslons Commanis

¢ |‘N:lr.ﬁmeln'lnmr)l trus Q Stan Stoz Relosd Umdsploy

| fidenry | Tz at Adrming siration App ication ruw 1 Stwl Slug Puleed Umdupbiy

[| Irug i Stel Slia Bulead Undapho

fapexamplas |57 2 0 Evampies e i St Sina Relnsd Undspioy

| manager | Tomzt Manager Applicasion trus i St Elcz Rslosd Undeploy

| tagriots-oxamplen |Server 2.4 Examples true q St Sios Ealosd Undaploy

|femesl-docs | Tomzat Documertation g 0 st Slos Balosd Undegloy

| el [— Iruw 0 Stel Sloz Beloed Undagloy .
o = |l hranet

Fig. A14. Tomcat Web Application Manager

Starting the Apache Tomcat server

To start the Tomcat server, open the bin directory of your Tomcat
installation (in our case, C:\Program Files\Apache Software
Foundation\Tomcat 5.0\bin) and double-click on startup.bat. This
will fire up the server (Fig. A.15). To shut down the server, double-click
shutdown.bat.

Appendix 305

Edit

@Back' 2,

View

Favorites Tools

Help

'?f‘ 7 Search Folders >

Address ||) C:\Program Files\Apache Software Foundation’, Tomeat 5.01bin

X 9 [

EEX

v ﬂGo

@ bootstrap,jar
[ﬂtataﬁna.bat

|=]| catalina.sh

2 catalina, xml

@ commons-daemon. jar
{j commons-launcher. jar
:j commons-loaging-api. jar
[cpappend bat
[Fdigest bat

@ digest.sh
:I:!jsvc.lar.gz

@ launcher. properties

= LauncherBootstrap class

[ﬁsewice.bat
[F]setclasspath.bat

|;T, setclasspath.sh

[gsthdown.bat

Server shutdown command ”

a shutdown,sh
[F}shutdown-using-launcher.bat

@shmdown-using-launchﬁr sh
[Fstartup.bat

Server startup command H

E startup.sh
mstartup-using-tauncher.bat

@ startup-using-launcher,sh

‘?3) tomcat.exe

“-g)tomtatw. exe
[Fltool-wrapper.bat

@ tool-wrapper.sh
mI:uol-wrapper-usingAlauncher.bat
@ tool-wrapper-using-launcher.sh

Fig. A.15. Starting Apache Tomcat Server

Starting the Tomcat Server brings on a DOS window that provides
information on any error messages ecncountered during the start-up

process. If everything went ok, it will say

@

further instructions (Fig. A.16).

84 &
ajpld 14
B4’ 8 1

jakarta-tomcat

jk running ..” and await for

4.1.38j

Fig. A.16. Starting

the Tomcat Service

306

Installing and Configuring the Apache Ant Build Tool

Ant is a Java-based build tool like Make. It helps to automate tasks like
creating directories, compiling, creating JARs, etc. Navigate to the Apache
Ant Project website http://ant.apache.org/ and click on Ant 1.6.1 (the
latest version at the time of this writing, Fig. A.17).

D Apache Ant - Welcome - Microsalt Internel Explorer (=11

T
APACHE ANT
PROJECT .

Welcome
[Ant161 |

Apache Ant 1.6.1 iz now avalable for o

The ASF Board has approved the new Apache License 2.0, For a
cooy of that [cense, ph zea BIp/www apache. orgllicances/,

The Ant 1.6.1 release is delivered with the Apachs Licerse 2.0

ributing

Meling Lists

Ant 1.6.1 fixes saveral bugs, most notably the handing of the
default ramespace for nested elements

Ant 1.6.1 slso introduces intial support for compiing with Java 1.5

Apache Ant 4

B Interet

Fig. A.17. The Apache Ant Project website

This will take you to a page that lists the available Binary Distributions.
Scroll down and locate the approach binary for your system (Fig. A.18),
here we click on zip archive: apache-ant-1.6.1-bin.zip.

3 Apache Ant - Binary Distribitions - Micrasoft Internet Explarar

e [db Wew fgvorees ook ek

Qe -

Ackdons | (] hitgffar. spacha orgindowrioad. e

-~

« | Cnange

Current Release of Ant

is the best available version, see the

Other mirrors: | o fmarors mio com/apache

Currently, Apache Ant 1.6.1
releaze notes.

Ant 1.6.1 has been released on 12-February-2004 and may not be

avallable on all mirrors for a few days
e .zip archive: apache-ant-1.6.1-hin.zip [PGF] [MD5] d——p—
e .tar.gz archive: apache-ant-1.6.1-bin 2 [PGP] [MDS

®» ,tar.bzz archive: apache-ant-1.6.1-bin tarbz2 [PGF] [MDS]

Nightly Builds

If you wish to use the latest Ant leatures, you can try dowrdoading
a nightly build. &

Appendix 307
=]
&
[#] @) @ Psowh formors @re @ (-) B
v s

&1

D biternet

Fig. A.18. Ant binary distributions

Follow the instructions on the installation windows to install the Ant
tool. Since this is a zipped file, you will need an unzipping utility to

uncompress and extract the files. After this step,
the installed files on your computer (Fig. A.19).

you should be able to see

& Program Files
Ei

Fig. A.19. Locating installed Apache Ant files

le Edit View Favorites Tools Help
@ Back ~ () lﬁ /ﬁ Search (= Folders | |2 [¥ 3
Address |IC2) C\Program Files
) Accelys [CIMSN Gaming Zone Dxerox
I)Adobe i |)
i [C)NetMeeting
|_ \C)apache-ant-1.6.1 | [C)Metscape
T Common Files (LD 0Orline Services
|2 ComPlus Applications | Outlook Express
() dsviewer [C)Persaft
eclipse |2 QuickTime
()EndNote [Dyraster
Chhex DReal
iHex 4.1 [FIRoxio

The Ant utility is located in the bin directory (in our case, C: \Program

Files\apache-ant-1.6.1\bin) (Fig. A.20).

308

Eile

& -
\) Back 7 W 7 Search

) C:\Program Files\apache-ant-1. % ﬂ Go
(= ant [Fenvset.cmd
@ ant.bat |cp,hat

Edit Wiew Favorites Tools Help

[ant.cmd 2 runant.pl
Fantenv.cmd ig runant. py
@ antRun [Frunrc.cmd

EﬂantRun.bat
4 antRun.pl
3 complete-ant-cmd.pl

Fig. A.20. The Ant build tool

You should also be able to see instructions for using Ant by running the
command:

ant —help

on the command-line from the Ant bin directory (Fig. A.21).

WINDOWS\Systen32\cmd.exe !EE

Fig. A.21. Running the ant — help command

Appendix 309

Make sure that you are in the right directory before you issue the above
command. In this case, the correct path to ant.bat is C:\Program
Files\apache-ant-1.6.1\bin\ and so the command must be run from
this directory. If this condition is not met, you will get the familiar DOS
error message:

“*ant' is not recognized as an internal or external
command, operable program or batch file.”

You will find information on Ant on the website that is simultaneously

downloaded in your installation directory (for example, C:\Program
Files\apache-ant-1.6.1\welcome.html).

Configuring environmental variables for Ant

To configure the environment variables for Ant on Windows, open:

Start-> Settings > Control
Panel>System—> Advanced > Environment Variables

and add the path information for Ant as shown in Fig. A.22 and Fig. A.23.

Edit System Variable @@
Yariable name: ‘ Path ‘
Yariable value: ‘ Ci\Program Files\apache-ant-1.6.1| ‘

[_ oK][Cancel]

Fig. A.22. Setting the Ant Path

310

New User Variable

Yariable name; ‘ ANT_HOME ‘

Yariable value: ‘ C:\Program Files\apache-ant-1.6.1 ‘

I OK][Cancel J

Fig. A.23. Setting the ANT_HOME constant

Building and Deploying The Web Application

Building the WAR file

Ant is a Make tool that is used to automate the creation of WAR files. It
uses a build file written in XML usually called build.xmi, although the
file name can be changed. By default Ant uses the build.xml file that is
located in the current directory where the user start Ant. The build file
contains a series of instructions to Ant that define the processing required
to successfully deploy the web application on the server. It defines what
are known as “rargets”, which in turn run discrete tasks - pieces of code
that can be executed independently — to compile the application and install
it on a server. Additional tasks, for example, reloading a modified
application onto a server or removing (“cleaning”) older copies of the
application to regenerate their content, can also be defined.

Let’s assume the development directory has the following structure:

Src The source directory for the Java code of the web app

Lib The libraries used by the web app

resources The resources like JSP, HTML, PNG, other images, that are
used by the web app

web.xml [The web app deployment descriptor

build.xml [The build description file

Appendix 311

The need for a build tool to deploy the application becomes obvious
when one considers the large number of steps required to perform the same
action manually:

1. Create “aist”, the distribution directory

2. Create “wWEB-INF” inside “dist”, then the “classes” and “lib
directories inside “WEB-INF”

3. Compile the Java source classes inside “dist/WEB-INF/classes’
directory

4. Copy the web.xml file into “dist/WEB-INF”

. Copy the JAR libraries needed by the web app from the “lib

directory into “dist/WEB-INF/1ib”
6. Create the WAR file using Java jar tool

11

(3]

wn

This process is automated through the use of Ant. First, we create
properties to let Ant know where to define resources; next, for each step
we create an Ant target defining actions to perform. An example of the
PubMed build.xml file is as follows:

<project name="PubMed Project" default="create-dist"
basedir=".">

<property name="dist.home" value="${basedir}/dist"/>

<target name="create-dist"
description="Create binary distribution">
<mkdir dir="${dist.home}"/>
<mkdir dir="${dist.home}/WEB-INF"/>
<mkdir dir="${dist.home}/WEB-INF /classes"/>
<mkdir dir="${dist.home}/WEB-INF /lib"/>
</target>

</project>

Then by calling the Ant engine and the target we want to run, we will
have the web app file structure created in the dist directory

ant create-dist or ant

Since we defined create-dist in the default attribute of the project tag,
the second command line will run the same target as the first command.

312

Deploying the application on Tomcat using Ant

Tomcat provides a manager for web applications (installed by default on
the context path /manager) that allows a user to deploy, install, reload,
remove, start, stop any application or list all the applications available on
the server from the web browser. Tomcat provides Ant tasks that can then
be used inside a target in order to manage the web applications. This
allows us to automate the deployment of PubMed web app by defining
targets in the build.xml file as shown below:

<project name="PubMed Project” default="create-dist"
basedir=",">

<property name="dist.home" value="${basedir}/dist"/>

<!--These properties generally define file and directory
names (or paths) that affect where the build process stores
its outputs.

app.name Base name of this application, used to
construct
filenames and directories.

Defaults to "myapp".

app.path Context path to which this application
should be deployed (defaults to "/" plus
the value of the "app.name" property).

build.home The directory into which the '"prepare"
and "compile" targets will generate their
output.

Defaults to "build".

catalina.home The directory in which you have installed
a binary distribution of Tomcat 5. This
will be used by the "deploy" target.

dist.home The name of the base directory in which
distribution files are created.

Defaults to "dist".

manager.password The login password of a user that is
assigned the "manager" role (so that he
or she can execute commands via the
" /manager” web application)

manager.url The URL of the "/manager" web
application on the Tomcat installation to
which we will deploy web applications and

Appendix 313

web services.

manager.username The login username of a user that is
assigned the "manager" role (so that he
or she can execute commands via the
"/manager"” web application)

-——>

<target name="create-dist"
description="Create binary distribution">
<mkdir dir="${dist.home}"/>
<mkdir dir="${dist.home}/WEB-INF"/>
<mkdir dir="${dist.home}/WEB-INF /classes”"/>
<mkdir dir="${dist.home}/WEB-INF /lib"/>
</target>

<property name="app.name" value="ncbi"/>
<property name="app.path" value="/${app.name}"/>
<property name="build.home" value="${basedir}/build"/>

<property name="dist.home" value="${basedir}/dist"/>

<property name="manager.url"
value="http://localhost:8080/manager" />

<property name="manager.username" value="tomcat"/>

<property name="manager.password" value="tomcat"/>

<1—

These properties define custom tasks for the Ant build tool
that interact with the "/manager" web application installed
with Tomcat 5. Before they can be successfully utilized, you
must perform the following steps:

- Copy the file "server/lib/catalina-ant.jar" from your
Tomcat 5 installation into the "lib" directory of your Ant
installation.

- Define the appropriate values for the
"manager.password”, 'manager.url", and “manager.username”
properties described above.

For more information about the Manager web application,
and the functionality of these tasks, see
<http://localhost:8080/tomcat-docs/manager-howto.html>.

>

<taskdef name="install"
classname="org.apache.catalina.ant.InstallTask"/>

<target name="install" description="Install application to
servlet container">

314

<install url="${manager.url}"
username="${manager.username}
password="${manager.password}
path="${app.path}"

"

war="file:////${dist .home}/${app.name} . .war"/>
</target>

</project>

The XML tag taskdef tells Ant to import the InstallTask Java class
into the build space. The target named “install” can use it by defining
the attributes needed by the task to support the install operation on Tomcat.
In a platform independent way, we can deploy the PubMed web app on any
web app servers available on any machine. This is in line with the “Write
Once, Run Anywhere” Java principle.

Version Control Systems

There is no software development without a Version Control System. A
project has a life cycle, where every little change that modifies the
behavior of the application is important and needs to be documented. With
version control systems, a developer can retrieve code written in the past
for a feature that was removed because the project was missing some
resources, but now needs to be put back because of the availability of new
resources. Version control also makes it easier to maintain code when
multiple developers are working together on a project. It is easier to
integrate changes made by individual developers rather than exchanging
the files by hand and incorporating changes using an editor.

Version control systems provide the functionality to compare one
version of code with another, merge multiple versions of the same file,
lock a file to avoid editing by other users while in use, access the
modifications using web interfaces, etc. To use version control, the project
team must first create a repository that it will use to manage the source
files and code versions. Each member of the team then imports the source
code files into the repository.

An example of a version control systems is CVS (Concurrent Versions
Control), which is widely used open source environment. CVS allows
users to import, commit, remove files, manage different code versions,
create branches to develop patches, etc. Here is an example of how to

Additional Resources 315

import a project, check it out (retrieve a copy of the latest version of a file),
work with it and check it back in the repository, on a Unix system.

First, we create a directory for the repository called /cvs-repository
and we initialize CVS using the command cvs -init. Then we create a
project directory called, for example, swingblast. To initialize and then
import our project using CVS, we run the following command on the
terminal:

cvs -d /cvs-repository init
cd swingblast
cvs -d /cvs-repository import -m "Important SwingBlast"

swingblast JFB INIT

The import command above tells CVS to use cvs-repository as the
repository and to import the content of the current directory we are in, into
the CVS directory swingblast, using the vendor tag JFB and INIT as the
release tag.

Now, we back up our source code by running the following command:
tar -—cvf swingblast-sav.tar swingblast

To check out the last revision of our project, we issue the following
command:

cvs co swingblast

With these commands, we have achieved our first integration of the
project in CVS. Another example of version control is Subversion.
Subversion aims to create a more sophisticated tool than CVS. It uses most
of the conventions used by CVS and adds new features like directories,
copies, renames, truly atomic commits, network server options and
efficient handling of binary files among other features.

Additional Resources

* Ant manual - http://ant.apache.org/manual/index.html

316

* Apache Ant download - http://ant.apache.org/bindownload.cgi

* Apache Software Foundation - http://www.apache.org

* Apache Tomcat - http://jakarta.apache.org/tomcat/

* CVS (Concurrent Versions Control) - http://www.nongnu.org/cvs/

* Subversion - http://subversion.tigris.org

Index

Aaronson, 81

ab initio, 209, 213

about, 18, 20, 21, 26, 29, 33,47, 48,
87, 156, 157, 158, 159, 160, 162,
169, 209, 231, 247, 253, 257,
258, 261, 265, 275, 276, 282, 289

aboutltem, 59, 60, 69, 71, 72, 74,
113,114,117, 236, 239

Abstract, 32, 162, 164, 174, 186,
188, 193, 198, 203, 205, 254

accessible, 295

accession number, 144, 213, 214,
258

accuracy, 1

action, 10, 37, 38, 49, 51, 84, 138,
175, 299, 311

actionable, 4

ActionEvent, 37, 38, 58, 60, 70, 74,
75,105,112,117, 118, 135, 138,
147,232,233, 234, 235, 239,
240, 267,270, 271,272,273

ActionListener, 37, 38, 58, 60, 70,
74,75,105,112, 117, 118, 138,
147,232,233, 234, 235, 239,
240,267,270, 271,272,273

actionPerformed, 38, 60, 74, 75,
105,117,118, 135, 138, 147,
232,234,239, 240, 270, 271,
272,273

Actions, 38

Activities, 252

Add, 104, 114

addActionListener, 38, 60, 74, 75,
105,117,118, 138,147, 232,
234,239, 240, 270, 271, 272,273

addListeners, 60, 73, 74, 105, 115,
117,137, 238, 239

addXXXListener, 37

adenine, 53, 54

adverse event, 2, 250

agent, 5, 161, 258, 260, 261, 262,
263, 264, 265, 266, 267, 269,
272,274, 276,278,279, 280,
281,282,283, 284,288, 289

Agent[], 272, 284

AGENT_SEARCH, 263, 267, 270,
271,272

agentCriteria, 284

Agentlmpl, 283, 284

agentLabel, 269

agentPanel, 269

agentPattern, 272, 284

AIDS, 161, 197

alanine, 54

algorithm, 25, 48, 53, 54, 55, 92,
133

alias, 257,278

align, 46, 52, 107, 247

Alignment, 10, 25, 31, 82, 144, 149,
150, 151

Alon, 81

alphabet, 54, 107, 133

Altschul, 25, 82

AMIA, 23

amino acid, 10, 27, 28, 54, 64, 125,
132, 133,134,210, 211

Analyses, 213

Analysis, 2, 27, 209, 250, 255, 256

Analyze, 13

Analyzer, 250

anatomical, 258

Anatomy, 13, 251, 255

ancestor, 257

ANDed, 197

318

Andonaydis, 23

annotate, 18

annotation, 13, 15, 16, 18, 19, 125,
205, 209, 221, 246, 250, 251,
253, 255,256

Ant, 165, 175, 206, 295, 306, 307,
308, 309, 310, 311, 312, 313,
314, 315, 316

ANT_HOME, 310

anti-cancer, 259, 288

Antoniades, 81

Apache, 19, 21, 160, 165, 172, 175,
176, 204, 206, 258, 295, 296,
297, 298, 300, 302, 304, 305,
306, 307, 316

APIL, 12, 14,16, 19, 44, 81, 83, 85,
86, 151, 158, 159, 165, 167, 206,
221,223,224, 225,252, 258,
260, 261, 263, 276, 283

APIs, 256

apoptosis, 258

app, 295, 301, 310, 311, 312, 313,
314

app.name, 312, 313,314

app.path, 312, 313, 314

APP_NAME, 39, 40, 43, 44, 45, 46,
58,59, 60, 63,70,71,74, 113,
114, 117, 235, 236, 239

APP_SERVICE, 267

APP_VERSION, 39, 40, 43, 44, 45,
58, 60, 63,70,71,74, 113, 114,
117, 235,239

APP_WINDOW_SIZE, 39, 40, 41,
58, 60

Appendix, 160, 165, 175,204

Applcation, 85

Apple, 245

application, 5, 6, 8, 9, 13, 16, 18, 19,
21,27, 28, 32, 33, 35, 36, 37, 38,
39,41,42,43, 44,45, 46,47, 48,
49, 50, 53, 63, 64, 65, 69, 78, 80,
81, 83, 84, 85, 87, 88, 92, 95,
101, 103, 104, 106, 107, 108,
109, 110, 126, 129, 132, 134,
136, 137,139, 142, 143, 151,
152, 155, 160, 165, 166, 167,

168,169, 175, 176, 179, 204,
205, 209, 212,221, 222, 224,
231,232, 235,242,243, 246,
247, 248, 252, 255, 256, 260,
261, 262, 263, 266, 276, 282,
286, 289, 291, 295, 303, 304,
310,311, 312,313, 314

Applications, 37

ApplicationService, 267, 275, 277,
283

Arabic, 205

Arabidopsis, 2, 235

Architecture, 7, 8,9, 10, 11, 12, 16,
18, 19, 20, 85, 86, 252, 255, 256

ARchive, 168, 169, 306

arg, 120, 240

arginine, 54

args, 41, 47, 63,78, 124, 193, 241,
266, 275

argument, 227, 231, 265

array, 11, 14, 65, 68, 161, 172, 174,
194, 195, 197, 254, 283

ArrayList, 112,122,172, 173, 174,
228,243,283

article, 162, 177, 183, 185, 186, 189,
192, 193, 195, 196, 199, 200,
202,203, 204, 205

asp, 278

asparagine, 54

aspartate, 54

assay, 3

assembly, 1, 249

authentication, 160, 252

Author, 205

automate, 251, 306, 310, 312

avian, 286

Award, 290

AWT, 32,36, 42,47, 264

BAC, 213,214, 219

backreference, 196

Barrett, 153, 293

Base, 312

B-cell, 15

behavior, 314

Benson, 293

billing, 8

billion, 1

bin, 304, 307, 308, 309

Binaries, 295

Binary, 125, 254, 296, 306, 307,
311, 312,313,315

bind, 211

binding, 13, 210

BioCarta, 257, 258, 260, 286, 288,
292

biochemical, 4, 5

Biochemistry, 54

bioinformaticians, 4, 7, 12, 290

Bioinformatics, 1,2, 3, 6,8, 11,12,
13,20, 23, 41, 155, 170, 171,
173,178, 190, 253, 255, 256,
257,293

BioJava, 124, 125, 129, 151

biological, 2, 4, 5, 21, 26, 152, 155,
249, 257,258

biologist, 17, 25

biology, 1, 7, 210, 249, 290

biomarker, 5

Biomarkers, 5

Biomedical, IX, X1, 3, 6,7, 8, 10,
11,12, 20, 21,23, 151, 155, 161,
162, 169, 204, 249, 253, 255,
289, 290, 291, 292

biomolecule, 5

Biosource, 16

biospecimen, 13, 19, 251

Biotechnology, 10, 25, 153, 161,
293

bits, 4, 10, 32, 148, 156, 260

BLAST, 10, 21, 22, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35,47, 63,
64, 65, 67,68,71,73,78,79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89,
90,91, 92, 93, 94, 95, 96, 98, 99,
100, 101, 102, 103, 104, 106,
108,109,110, 111, 112, 113,
115,116,118,121, 122, 124,
132, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 151,
152,156,209, 212, 221, 232,
234,245, 246, 247

319

BLAST_PROGRAMS_DNA, 65,
68,71,73,113, 115

BLAST_PROGRAMS_PROTEIN,
65,71,73,113, 116

BlastException, 86, 87, 89, 90, 91,
93,94, 95, 96, 98,99, 101, 102,
112,121

BlastHit, 148

BlastHsp, 148

BLASTing, 35

BlastManager, 86, 87, 89, 90, 91,
92,93,98,99, 112,121

BLASTN, 28, 33, 64, 67, 68, 78,
104, 108, 109, 246, 247

BLASTP, 28, 33, 64, 68, 78, 247

BLASTX, 28, 64, 65, 67, 68,71, 78,
104, 108, 109, 113, 212, 247

block, 84, 170, 181, 231, 242

BMC, 23,292

boolean, 51, 61, 67, 68, 75,77, 89,
96,97, 100,102, 117,118, 119,
122,123,125, 126,131, 132,
134, 135, 138, 143, 224, 229,
234,241, 265,274, 285

border, 42

BorderLayout, 40, 46, 59, 60, 71,
72,105,114, 115, 142, 233, 234,
235,236, 237, 238, 263, 268,
269,273

box, 302

bp, 61, 62,76,94, 119, 218

Branscom, 1

browser, 129, 155, 156, 158, 166,
167,168,169, 171, 213, 215,
295,299, 312

Bryant, 293

Buetow, 23, 293

BufferedReader, 95, 98, 102, 131,
166, 172,173,181, 182, 191, 201

build, 295, 306, 308, 310, 311, 312,
313,314

build.home, 312, 313

build.xml, 310, 311, 312

Burge, 212, 247, 248

Business, 8, 48

320

button, 33, 37, 38, 39, 46, 67, 104,
105, 108, 134, 137, 138, 139,
144,164, 166, 170, 179, 215,
232,245,261

buttonPane, 40, 60, 72, 115, 233,
234,237,238

byte, 2

ByteArrayOutputStream, 94, 95, 98,
101, 102

C, 23, 38, 42, 53, 54,55, 133, 134,
194, 207,247, 248, 293, 297,
304, 307, 309

CH+, 42

caAdapter, 8

CaArray, 13, 14, 15, 16, 250

caBIG, IX, X1, 3,6,7, 11,12, 13,
14, 18, 20, 21, 22, 249, 250, 252,
253, 254,255, 289, 290, 291

caBIO, 11, 14, 16, 253, 256, 257,
258,259, 260, 276, 286, 289,
290, 291

CABIO_HTTP_SERVER_URL,
267

CaBIOReportEngine, 262, 267, 275,
276,277

CaBIOSecarchEngine, 262, 267, 282,
283

caCORE, 8, 11, 14, 18, 20, 23, 253,
255,256,257, 259, 261, 263,
283,289, 290, 291, 292, 293

caDSR, 11, 14, 19, 20, 22, 253, 256,
291

CAE, 13

Caenorhabditis elegans, 2

caFE, 255

caGrid, 11, 12,252

callback, 37

caMOD, 255, 259, 291

cancer, 2,3,4,6, 11, 14,16, 18, 19,
20, 21, 23, 205, 249, 250, 251,
253,254, 255, 256, 257, 259,
288, 289, 290, 291, 293

cancer center, 6, 18, 19, 21, 250

cancer centers, 6, 18, 19, 21, 250

Canese, 293

carbohydrates, 5

case, 301, 304, 307, 309

case-insensitive, 162

Casting, 225

catalina.home, 312

CaTIES, 14, 18, 19, 251

Caucasian, 27

causation, 4, 6, 12

causative, 5, 161, 290

CaWorkBench, 13, 16, 22

cbDNA, 68

cBio, 17

cbProtein, 65, 66, 69

CDE, 20, 23, 252

cDNA, 256

CDS, 215,218, 219, 236

CDUS, 250

cell, 4,12, 13,16, 17, 27, 258, 288,
290

cellular, 1, 4,26, 210, 258

cerebral, 290

cerebral cortex, 290

CFTR, 29, 50, 54, 56, 57, 58, 106,
108,129,130, 211

CGAP, 255, 291

CGI, 155,157,158

Channel, 36

char, 105, 120, 194, 195, 203

character, 51

charlLo, 194, 195, 203

charUp, 194, 195, 203

checkboxes, 64, 81

chemical, 5, 291

Chemistry, 54

Chetvernin, 293

child, 42

Chilukuri, 23, 292

chips, 255

chloride, 27

choice, 297

cholesterol, 5

Chou, 82

Chris, 212

chromosome, 213, 243

Church, 293

citation, 162, 178, 183, 186, 205

citationReader, 182, 183, 191

class, 35, 39, 41,42, 43, 44, 45, 47,
58, 63, 70, 85, 86, 87, 88, 89, 90,
91,92,93,94, 98,99, 112, 113,
125,129, 131, 149, 158, 168,
169, 173, 187, 198, 221, 223,
224,225,226, 227,228, 231,
232,233,234, 235, 240, 242,
243,262,266, 267,275, 276,
277,278,279, 280, 281, 282,
283, 284, 285,314

Classes, 32, 88, 261

classification, 15, 215

ClassNotFoundException, 93, 113,
227,240

Clear, 38, 39, 40, 60,72, 115, 137,
237,261,273

click, 37, 38, 176, 245, 295, 297,
306

client, 10, 12, 84, 155, 156, 157,
159, 169, 259

Clinical, 6, 13, 18, 19, 250, 251, 280

ClinicalTrialProtocol, 258, 276, 279

cloning, 81

Close, 48, 147

cluster, 258, 260, 277

clustering, 7

CMAP, 255,256, 257, 291

code, 310, 314, 315

codon, 218

Cold Spring Harbor Laboratory, 1

collaboration, 3,11

collection, 3, 10, 147, 167, 172, 173,
174,228, 243, 276, 277, 278,
279, 280, 281, 283

color, 147, 149, 151, 161, 170, 171,
173,178,181, 182, 188, 189,
190, 193, 195, 196, 198, 199,
200, 201, 204

ColorFormatter, 147, 149

combo, 65, 67, 68

command, 156, 157, 172, 175, 260,
261,263, 308, 309, 311,315

command-line, 308

community, 3, 8, 12, 14, 250, 252,
255

compatibility, 11, 252

321

compatible, 7

compilation, 175

Compile, 48, 106, 175, 297, 310,
311,312

compiler, 297

compiling, 306

complement, 1

complementary, 81

compliance, 7

compliant, 14

component, 9, 11, 12, 14, 16, 37, 45,
46, 48, 49, 68,77, 123, 159, 174,
234, 250, 255

computer, 156, 253

Computerworld, 290

computing, 8, 12, 15, 20, 249

conductance, 29, 106

confidence, 6

confidentiality, 8

configuration, 168, 169,295

configured, 90, 224, 299

Configuring, 306, 309

Connectivity, 19

connector, 297

Console, 299

Consortium, 1, 15, 255, 256, 257,
258,292

constant, 310

construct, 312

constructor, 44, 48, 224, 263, 275,
283

container, 42, 43, 45, 158, 159, 160,
165, 263, 268, 313

content, 18, 19, 45, 125, 158, 159,
166, 170,213, 215, 232, 252,
262,310,315

contentPane, 263, 268

Content-Type, 95, 101, 156

context, 312

control, 314, 315

Controller, 9, 10, 160

convergence, 249

Coronado, 23, 293

Courier, 52, 59, 107, 148

covalent, 210

Covitz, 23, 292, 293

322

cPath, 13,17, 18

CpG, 210, 211

credentials, 176

cross-disciplinary, 250

cross-reference, 253

CSM, 8

CTEP, 259, 291

CTMS, 6, 250

curated, 258

custom, 313

cutoff, 144

cut-off value, 213

cutting-edge, 3

cysteine, 54

cystic fibrosis, 27, 29, 81, 106

cytoplasmic, 27

Cytoscape, 18

cytosine, 53, 54, 211

Danio rerio, 2

database, 8, 14, 16, 18, 19, 25, 26,
217,28, 29,31, 33, 34, 35, 65, 66,
67, 68,74, 81, 82,92, 94, 103,
116, 118, 120, 144, 153, 157,
160, 161, 172, 205, 206, 212,
254,255, 259,293

database-independent, 19

DataOutputStream, 94, 95, 98, 101

DataRetriever, 168, 169

DATE_FORMATTER, 277, 280

debug, 42

decipher, 17, 247

deciphering, 26

declaration, 41, 42, 87, 225

declare, 43, 55, 87, 170, 184, 195,
227

default, 35, 44, 45, 48, 62, 68, 76,
119, 213, 223, 260, 264, 310,
311,312

Define, 313

definition, 10, 35, 42, 87, 144

de-identification, 252

delegating, 265

delegation, 36

delete, 39, 111, 122, 181, 189, 191,
200, 201, 265, 274

delimited, 48

deliver, 8

deliverables, 252

delivery, 252

demise, 290

denoising, 17

density, 213

dentistry, 161

deoxyribose, 53

deploy, 12, 160, 165, 310, 311, 312,
314

deployed, 295, 312

Deployment, 168,310, 312

Description, 11, 13, 45, 88,257

Descriptor, 168, 169, 310

design, 3,7, 8,9, 14, 19, 36, 49, 84,
85, 86,92, 169, 204, 225, 254,
263, 291

destroy, 159

Devare, 81

develop, 2, 8,12, 17, 151, 246

developer, 8, 92, 170, 231, 252, 263

development, 1, 5, 12, 18, 32, 151,
155, 175, 250, 252, 253, 255,
290, 295, 297, 310, 314

device, 7

diagnose, 5

diagnosis, 255

diagnostics, 5

DiCuccio, 293

differential expression, 5, 12

digestive, 27

Dimension, 39, 40, 41, 46, 58, 59,
60, 66,67,70,71,72,73,74,
113, 114,115,116, 117, 142,
233,234, 235,237, 238, 239,
264, 267, 268, 269, 270, 273

dinucleotide, 211

diplay, 112

directories, 306, 311, 312, 315

directory, 11, 35, 168, 169, 297,
304, 307, 308, 309, 310, 311,
312,313,315

disable, 67, 137, 138, 263

Discover, 28, 291

discovery, 2, 11, 13, 26, 209, 250

Discrimination, 250

disease, 2,4,5,6,7,12,13,17, 18,
21, 27,250,251, 257, 258, 290

display, 8, 41, 48, 60, 62, 63,72, 77,
115,120, 143, 144, 162, 164,
205, 238, 260, 261, 263, 265

dist.home, 311, 312, 313, 314

dist/WEB-INF, 311

dist/WEB-INF/classes, 311

dist/WEB-INF/lib, 311

distinct, 8, 10

distribute, 8, 252

distributed, 2, 6, 8,12, 13, 15

distribution, 311, 312, 313

DNA, 1, 10, 17, 20, 21, 25, 28, 33,
53, 54, 55, 56, 58, 61, 62, 65, 67,
68,69,71,75,76,77,78, 81,
105,107,113, 119, 122, 123,
124,133, 134, 135, 149, 161,
209,210,211, 212,213, 218,
247,255, 257

docListener, 137, 138

DOCTYPE, 156

document, 137, 138, 156, 157, 166,
186, 193, 252

documentation, 22, 44, 252, 253

DocumentListener, 137, 235, 241,
263,264, 267, 268

domain, 6, 19, 26, 210, 250, 252,
254,256,257, 258, 266, 276,
277,283, 286, 289, 290

Doolittle, 26, 81

DOS, 305, 309

double-click, 304

Double-clicking, 297

double-helix, 20

double-stranded, 213

download, 297, 316

Downloading, 295

Downloads, 295, 296

downstream, 221

draw, 6, 21, 26, 42

driver, 89, 90, 91, 93, 223, 224,227

drop-down menu, 64, 78

Drosophila melanogaster, 2

drug, 5, 258, 259

duplicate, 254

323

dynamic, 18, 19, 158, 159

e-business, 6

Edition, 2, 81, 159

editor, 112, 314

EGFR, 286

electronic, 7

electrophoresis, 17

Electrotechnical, 256

element, 23, 26, 36, 194

elucidation, 20, 21

embedded, 181, 209, 255, 284, 285

enable, 2, 10, 14, 15, 19, 63, 67,
104, 137,221, 242, 247, 251,
253,254,262, 263

enabled, 67, 68, 137, 241, 265,274

enableFunctions, 67, 69, 74,75, 77,
105,117,120, 122, 123, 137,
138, 238, 240, 241

enables, 7, 14, 68, 80, 83, 221, 261,
265

encapsulate, 36, 84

encapsulated, 9, 87

encapsulating, 38

encoded, 26, 209, 210

encoding, 26, 81, 156, 257

engine, 7, 12, 13, 18, 19, 21, 29, 32,
33,92,172, 251, 263, 275, 282,
311

engineering, 32

Ensembl, 152, 153, 254

Enterprise, 2, 6,7, 8, 10, 15, 19, 20,
21, 159,253, 255, 256

enterprise-level, 2

Entrez, 152, 161, 205, 206, 253, 258

EntrezGene, 258

enumerated, 210

enumeration, 160

environment, 8, 17, 90, 204, 225,
230, 309, 314

enzymatic, 211

enzyme, 26, 211

epidermal, 286

era, 3,289

erb, 286, 287

e-research, 6, 7

324

error, 64, 84, 87, 88, 89,91, 132,
134,136, 169, 180, 181, 223,
265,274, 284, 305, 309

errorDump, 265,271, 272, 274

erythroblastic, 286

EST, 258

etiology, 257

ETL, 253, 254, 255, 292

eukaryotes, 211

eukaryotic, 213

Evaluation, 259

eValue, 66, 67, 74,94, 103, 117,
118, 120, 144

E-Value, 66, 74, 117, 148

EVALUES, 65, 66, 71,74, 113, 117

event, 20, 36, 37, 38, 42, 58, 70,
105, 112, 135, 170, 233, 235,
264, 265, 267, 268, 270, 271,
272,273,274, 275

event-dispatching, 37, 47, 48, 231,
264,265, 266

EventListener, 36

EVS, 19, 20, 22, 253, 256, 291

Exception, 76, 89, 90, 91, 126, 127,
135, 143, 169, 170, 181, 190,
193, 200, 224, 225, 227, 229,
231,284

execute, 37, 231, 312, 313

Execution, 84

exit, 38, 45, 60, 74, 117, 181, 239

EXIT_ON_CLOSE, 40, 45, 59, 63,
71, 114, 236,263, 268

exon, 210,212, 213,217,218,238

expenditure, 250

experiment, 4, 14, 15, 17, 258

experimental, 3, 5, 7, 13, 14, 204,
249

explicit, 107

Express, 255

expression, 4, 5, 13, 14, 15, 16, 17,
18,152,153,172, 184, 194, 196,
197, 255, 256,257, 258

Extraction, 14, 251, 254

Extract-Transform-Load, 254

factory, 263

fail-safe, 7

false, 67, 68, 69, 77, 89, 95, 97, 100,
101,117,123, 137,138, 143,
146, 224,229,234, 238, 240,
268,270, 271,272,273

Fasta, 33, 34, 35,48, 49, 50, 51, 52,
61,75, 80,81, 104, 105, 107,
108, 118, 126, 129, 135, 136,
137,218

fastaFormatted, 51, 52, 61, 62, 75,
76,118,119,127,138

feature, 314

federal, 7

federated, 7, 8, 18, 252

federation, 255

Federhen, 293

File, 98, 103, 111, 112, 121, 164

filter, 205

financial/billing, 250

fingerprint, 5

flag, 132

focus, 3, 37, 48, 49, 50, 51, 104

FocusEvent, 49, 51, 58, 61, 70,75

focusGained, 49, 51, 61, 75

FocusListener, 48, 49, 51, 58, 61,
70,75

focusLost, 49, 51, 61,75

font, 13, 52, 53, 59, 107,108, 114,
146, 149, 170, 171, 173, 178,
181, 182, 188, 189, 190, 193,
195, 196, 199, 200, 201, 204,
234,237,268

form, 89, 160, 166, 170, 171, 173,
178,179, 190, 191, 201, 210,
211,254,263

format, 15, 33, 34, 35, 37, 41, 47,
48, 49, 50, 51, 52, 53,61, 75, 80,
104, 105, 107, 108, 112, 114,
118,120, 126, 129, 134, 136,
137,138, 139, 144, 145, 149,
164, 168, 183, 184, 218, 254, 280

Formatt, 200

formatted, 50, 51, 52, 53, 106, 107,
129, 135,137, 254

formatter, 147, 149

formatting, 51, 80, 104, 108, 129

foundation, 19, 32, 160, 175, 206,
295,297, 304, 316

fragment, 106

Fragoso, 23, 292, 293

Frame, 42, 45,217, 218, 233, 263,
266

framework, 2,9, 12, 19, 32, 35, 38,
42,43, 48, 83, 85, 152, 160, 165,
178,221,223, 225

freeze, 266

frequency, 211

fruit fly, 2

FTP, 10

function, 5, 17, 19, 26, 35, 67, 68,
111, 126, 152,212, 255, 260, 263

functionality, 313, 314

FunctionExpress, 250

fundamental, 20, 152, 204, 209, 290

further, 305

GAl, 255,291

gateways, 157

GEDP, 255, 256, 291

GenBank, 33, 64, 81, 83, 124, 125,
126, 127,128,129, 130, 131,
134, 137, 140, 141, 142, 143,
144, 145, 146, 151, 152, 257,258

GENBANK_URIL, 129, 131

GenbankDB, 126, 129, 131

gene, 4, 5,10, 12, 13, 14, 15, 16, 17,
18, 26, 28, 29, 50, 54, 81, 152,
205, 206, 207, 209, 211, 212,
213,215,217, 218, 221, 231,
232,242,246, 247, 248, 250,
253,254,255, 256, 257, 258,
260, 261,262, 263, 264, 265,
266, 267,269, 270,271, 274,
276,277,278, 279, 280, 281,
282,283, 284,286, 287, 290, 292

Gene/Pathway, 260, 261, 271

GeneAlias, 257, 276, 278, 283

GeneCriteria, 283

GeneOntology, 277, 280

genePanel, 269

genePattern, 264, 270, 271

genetic, 2, 4, 209, 255, 258

325

Genome, 1, 17, 20, 21, 23, 153, 211,
213, 248, 249, 250, 255

genome-sequencing, 209

genomic, 10, 11, 16, 211, 212, 213,
247,251, 255,257,258

Genomics, 1, 20, 207, 249, 250

GenScan, 215, 221, 222, 223, 224,
225,226,227, 228, 233, 235,
240, 241

GENSCAN_HOSTNAME, 228

GENSCAN_PATH, 228

GENSCAN_PORT, 228

GENSCAN_URL, 228

GET, 84, 155, 156, 157, 170, 171,
173, 178, 190, 201, 222

getter, 87

GGF, 12

GlI, 33, 35,75, 124, 126, 128, 129,
134,136, 137, 140, 142, 145,243

Gish, 82

Global, 12, 22, 25, 290

Globus, 12

glutamic, 54

glutamine, 54

glycine, 54

GMT, 156

GO, 254,258, 260, 280

GoOntology, 257

Governance, 252

graphical, 9, 33, 34, 36, 48, 112,
143, 144, 258, 286

gray, 266

green, 197

Grid, 3, 6, 11, 12, 249, 252, 255,
291

GridForum, 12, 22

Grzelczak, 82

guanine, 53, 54, 211

GUI, 35, 39, 41, 45, 47, 48, 63, 64,
80, 86, 103, 105

Guidelines, 22, 207, 252

Gustafson, 23, 293

HapMap, 250

hardware, 38

Hartel, 23, 293

326

HashMap, 89, 98, 112, 120, 223,
228,229,235, 240

HeadlessException, 233, 263, 267

health, 7, 161, 249, 290

healthcare, 8, 253

heart, 5

heavyweight, 42

helix, 210

Helmberg, 293

Helper, 235, 241, 242, 243

heredity, 257

heuristic, 25

HGNC, 205, 286

HGP, 1, 21,22

Hibernate, 19, 22

hierarchy, 35, 42, 43, 162

hieroglyphic, 1

high-throughput, 3, 249

HIPAA, 7

histidine, 54

histology, 14

Histopathology, 258

Hit_accession, 144

Hit_definition, 144

Hit_hsps, 144

Hit_id, 144

Hit_len, 144

hits, 26, 29, 31, 33, 81, 95, 148, 151,
152,232

HIV, 161, 162, 163, 176, 177, 194,
197

HMM, 210, 248

Homo sapiens, 1, 16

homolog, 286

HomoloGene, 152, 254, 258

homologous, 28, 248, 257

homology, 10, 26, 28

Hood, 81

HSP, 144, 148

Hsp_bit-score, 144

Hsp_evalue, 144

Hsp_number, 144

Hsp_score, 144

html, 21, 22, 81, 117, 118, 129, 148,
149,152,156, 158, 161, 166,
167, 168, 169, 170, 171, 173,

174,178, 188, 189, 190, 191,
193, 195,197, 198, 199, 200,
201, 204, 206, 213, 222, 242,
247, 255,292, 309, 310, 313, 315

HTTP, 10, 11, 18, 19, 83, 84, 155,
156, 157, 158, 159, 165, 169,
222,225,258
//ant.apache.org/, 306, 315, 316
/ljakarta.apache.org/tomcat/, 295,

316

/l'www.apache.org, 295,316
/lwww.apache.org/, 295

HTTP-encoded, 83, 93

HttpServlet, 159, 169, 173, 187,
197,198

HttpServletRequest, 169, 170, 173,
179, 187, 188, 190, 197, 198

HttpServletResponse, 166, 169, 170,
173,187, 188, 198

hub, 36, 286

HUGO, 205, 206, 207

Hunkapiller, 81

hybridization, 14

hydrophilic, 27

hyperlink, 174, 176

hypothesis, 4, 12, 204, 290

icon, 299

ICR, 6,13

1D, 29, 124, 125, 127,129, 131,
134, 143, 183, 186, 254, 257,
258, 260

identification, 10, 81, 248, 256

Identifier, 84, 162

identify, 5, 6, 13, 15, 16, 18, 21, 81,
160, 247, 291

identity, 8, 17, 26

Ids, 172

IEC, 256

IHGSC, 1

image, 7, 168, 256, 292

Imaging, 6, 251

immunoglobulin, 26

immunology, 258

implementation, 8, 63, 87, 89, 90,
92,221,223, 225, 226, 227, 246,
295

Implementing, 92

import, 36, 37, 39, 42, 55, 58, 70,
89, 98,112, 125, 126, 131, 169,
173, 187,197, 198, 223, 228,
233, 235, 242, 243, 266, 267,
276,277,283,314, 315

in vivo, 251

index, 21, 22, 81, 152, 156, 206,
234, 255,259, 290, 292

industry, 3

infectious, 2

Informatics, 3, 6, 23, 249, 250, 255,
290, 293

Information, 8, 10, 14, 17, 25, 153,
161,251, 276, 290, 293, 305,
309,313

infrastructure, 6, 7, 8, 11, 20, 22, 23,
251, 252,253,256, 257, 290,
291,293

inherit, 43

inherited, 27

inherits, 42, 225

inhibit, 5, 291

inhibiting, 4

init, 159, 218, 233, 241, 263, 266,
267,275,315

initation, 218

initial, 29, 283

initialization, 168, 227

initialize, 89, 159, 315

initializing, 227

initiation, 210, 218

initiatives, 3, 290

input, 10, 26, 27, 28, 31, 32, 33, 34,
35,36,41,48, 63,64, 105, 106,
132,133, 134, 136, 144, 148,
170, 171,173, 178,179, 190,
201, 204, 213, 215, 218, 247,
254,276, 283,286

InputStream, 182, 191, 193

InputStreamReader, 95, 98, 102,
131,172,173, 181, 182, 191, 201

insert, 137

insertUpdate, 137, 241, 264, 268,
274

327

install, 160, 175, 298, 307, 310, 312,
313,314

installation, 14, 175, 176, 295, 297,
298, 304, 307, 309, 312, 313

installed, 307, 312, 313

Installing, 306

instance, 45, 47,87, 88,91, 92, 93,
125, 158,169,221, 223, 225,
226,257

instantiate, 38

instantiating, 42

institution, 260

Insurance, 7

int, 45,49, 51, 52, 55, 56, 58, 61,
62, 63, 66,67, 68,69, 71,73, 75,
76,77,78,97, 99, 100, 103, 105,
106,111,113,115,116, 118,
120, 121, 122,123, 124, 127,
131, 132, 134, 135, 148, 149,
174, 181, 185, 186, 189, 191,
192, 195, 199, 200, 201, 202,
203, 228, 229, 234, 243, 264,
267,270,271,272,273, 271,
278,279, 280, 281, 282, 285

integral, 253

integrate, 4, 6, 16, 20, 249, 251, 252,
260, 314

integrated, 3, 10, 212, 250, 256

integrating, 12, 13, 17, 256

Integration, 11, 12, 13, 17, 250, 251,
253, 254, 315

integrator, 250

integrity, 8

intellectual, 252

interaction, 13, 18, 19, 205

interchange, 6, 11

mnterface, 9, 14, 16, 18, 19, 32, 36,
48, 81, 85, 137, 151, 155, 157,
158, 159, 205, 225, 235, 242,
250, 252,257,261, 263, 264

intergenic, 213

International, 1, 15, 54, 256

Internet, 6, 10, 11, 20, 156

interoperability, 11, 12, 252

interoperable, 6, 10, 15, 23, 250,
255, 256,292

328

interoperate, 11

interplay, 7, 211

interpretation, 14

interrupt, 38

intervening, 211

intervention, 5, 257, 258

interventional, 5, 15

intron, 210

intronless, 211

inventory, 13, 19, 251

invertebrate, 249

investigation, 13

invisible, 45

invoke, 10, 11, 265

invokeAndWait, 143, 265, 266, 275

invokeLater, 41, 47,48, 63,78, 121,
124,127,147, 241, 264, 265,
266,273,275

IOException, 95, 98, 101, 102, 131,
170,173,181, 182, 188, 189,
191, 198, 199, 201

Ishmukhamedov, 23

islands, 210,211

ISO/IEC, 256, 292

isochore, 213, 215

isoleucine, 54

iterate, 68, 174, 178, 194

iterating, 6, 160

iteration, 179

iterative, 32

Iterator, 148, 173, 174, 277, 281

IUPAC, 54

IUPAC-IUB, 134

j++, 106, 120

Jakarta, 172, 183, 196, 206, 258,
295

JApplet, 43

jar, 168,172,222, 258, 259, 311,
313

Java, 1, 2, 3, 16, 18, 19, 21, 32, 35,
36, 37, 38,39,41,42, 44,45, 47,
58,70, 81, 85, 87, 89, 90, 91, 92,
93,98,103,112, 131, 152, 155,
158,159, 160, 165, 167, 168,
169, 170,171,172, 173, 178,
187, 190, 198, 204, 206, 222,

223,224,225,226,227, 228,
231,232,233, 235, 243, 257,
258,259, 267,275,277, 283,
295,297,310, 311, 314

Java Bean, 257

Java-based, 306

JButton, 37, 40, 43, 59, 60, 71, 72,
105,113, 114, 115, 232, 233,
234,236, 237,267,270, 271,
272,273

JcaBIO, 260, 261, 262, 275, 282,
286

JCheckBox, 65, 66, 68,71, 73,77,
113,115,116, 122,123,234

JComboBox, 65, 66, 68, 71, 74, 113,
116,117,123, 236, 238, 239

JComponent, 39,43, 58,71, 77,
113, 236

JDBC, 19

JDialog, 43, 146, 221, 233

JDK, 297

jfb, 35, 39, 41, 58, 70, 89, 91, 92,
93,98, 112,113,129, 131, 173,
187, 197,221,222, 223, 224,
227,228, 232,233, 235, 239,
240, 242, 266, 276, 283, 284, 285

JEFC, 32

JFileChooser, 111, 122

JFrame, 39, 40,41, 42,43, 44, 45,
58,59,63,70,71,112, 114, 235,
236,263, 267, 268

JgenScan, 224,227, 228, 240

JGI, 1

JLabel, 40, 46, 59, 65, 66, 72, 73,
74,114, 115,116,117, 142, 236,
237, 238, 239, 263, 267, 268,
269, 270

JList, 233,234

JMenu, 40, 43, 46, 59, 69, 71, 72,
114, 146, 147, 236

Jmenultem, 43

Joint Genome Institute, 1

journal, 162, 163, 183, 186, 192,
193,203

JPanel, 37, 40, 43, 45, 46, 59, 60,
65,66,71,72,73,74, 105, 114,

115,116,117, 142, 233, 234,
235,236, 237,238,239, 263,
268, 269, 270, 273

JQBlast, 83, 89, 91, 92, 93, 96, 98,
99,113

JRE, 2

JScrollPane, 39, 40, 43, 46,59, 71,
72,113,114, 147,233, 236, 237,
268,269

JSP, 18, 19, 160, 168, 204, 295, 297,
310

JSTL, 160

JTextArea, 38, 39, 40, 43, 46, 59,
71,72,113, 114, 146, 234, 236,
237,264,267,268,270, 271,
272,273

JTextField, 263, 267, 269, 270

just-in-time, 2

JVM, 47, 89, 92, 93, 169, 223, 227,
231, 265

JWindow, 43

Kapustin, 293

Karlin, 212, 247

Kenton, 293

Kerem, 81

Kettle, 255, 292

keyboard, 37, 38, 266

key-value, 89

keyword, 42, 43, 44, 48, 87, 92, 161,
162, 166, 170, 176, 177, 178,
179,181, 182, 189, 199, 231, 286

Khovayko, 293

kidney, 5

kilobase, 213

kinase, 26

Kit, 8, 23, 292, 297

knowledge, 4, 6, 20, 155, 161, 249,
253

label, 50, 142, 214, 260

laboratory, 4, 6, 26, 250, 251, 290

laboratory-based, 4, 6

Lander, 23

Latin, 205, 209

layer, 8

layout, 19, 32, 35, 45, 46, 63, 115,
116,117,168

329

lead, 2, 4, 27,42, 253, 290

leucine, 54

leukemia, 286

LexGrid, 252

libraries, 310, 311

library, 21, 160, 161, 183, 196, 222

license, 14

lifecycle, 8

lightweight, 42

Limits, 205

link, 151, 205, 260, 286, 290

Linux, 16

lipids, 5

Lipman, 82, 293

list, 301, 312

listen, 36, 37, 263

listener, 10, 37, 38, 49, 105, 137,
138

listening, 37

listens, 36

literature, 6, 161, 162, 204

load, 36, 90, 91, 93, 157, 193, 223,
224,227,254

Local, 10, 14, 19, 25, 82,109, 110,
156, 205

localhost, 168, 169, 176, 299, 300,
313

localization, 17

location, 45, 182, 194, 247, 254,
257,259

lock, 231

LocusLink, 253, 258

logic, 8, 19, 32, 48, 49, 51, 67, 68,
106, 160, 165, 260

login, 176, 301, 303, 312, 313

low-level, 37

lung, 4, 16, 288

lymphoma, 15

lysine, 54

Mac, 245

machine, 10, 47, 107, 158, 169, 205

machinery, 1, 17, 210

Madden, 82, 293

MAGE, 15,22

MAGE-ML, 14, 15,22

MAGE-OM, 14, 15, 16

330

Maglott, 293

main, 21, 37, 41, 42, 46, 47, 50, 63,
78,124,193, 221, 241, 242, 256,
261,266,275

maintainability, 8

maize, 213

MALDI-TOF, 250

malformed, 95, 102

MalformedURLException, 95, 98,
102

malignant, 26

Management, 6, 15, 250

manager, 45, 46, 175, 176, 301, 302,
303, 312,313,314

manager.password, 312,313, 314

manager.url, 312,313, 314

manager.username, 313, 314

Map, 89, 93, 94, 99, 103, 120, 223,
225,228,229, 230, 240, 250,
256, 258, 260, 278

Mapping, 19

marker, 5

Markup, 10, 14

match, 13, 28, 29, 34, 41, 75, 96, 97,
100, 102, 125, 126, 132, 135,
162,172,174, 176, 181, 191,
194, 196, 197, 201, 283, 286

matches, 29, 194,212

Mathematics, 212

matrix, 29, 33, 215

maturity, 252

maximal, 144

Maximize, 48

McCurry, 23

meaing, 84

measure, 252

mechanism, 5, 17, 18, 19, 42, 83,
87,92,213

medical, 4, 7, 20

medication, 2

medicine, 1, 2, 20, 21, 161, 249

MEDLINE, 161, 162, 183, 184

member, 314

membrane, 27

memory, 158

menu, 36, 37, 39, 40, 46, 50, 59, 69,
70,71,72, 114, 144, 146, 147,
236

menuBar, 147

menultem, 147

MeSH, 162

message, 29, 64, 91, 94, 134, 136,
139, 143, 170, 180, 181, 227,
260, 265, 309

Messaging, 10, 11, 36

Messenger, 210

metabolic, 26

metabolism, 258

metadata, 256

metathesaurus, 256, 292

methionine, 54

method, 3, 4, 37, 38, 45, 46,47, 48,
49,51, 55, 63, 65, 67, 68, 83, 84,
85, 86, 87, 88, 90, 91, 93, 94, 95,
96, 105, 125, 129, 134, 135, 138,
139, 146, 147,157, 158, 159,
169, 170, 178, 179, 180, 181,
182,184, 194, 195, 196, 223,
225,226,227,231, 262, 263,
264,265, 266,276, 282, 283

methodology, 17, 204

metrics, 252

MGED, 14, 15,22

MIAME, 14

MIAPE, 17

microarray, 13, 14, 15, 250, 255,
256

middleware, 12

Miller, 82

Miner, 250

mismatch, 64

MIT, 10, 213

mkdir, 311, 313

MMHCC, 255, 292

modalities, 251

model, 2, 4,6,9,10, 11, 12, 13, 14,
15,19, 36, 160, 213, 250, 251,
252,256,257,290

Modeling, 12,13, 17,22, 250

Model-View-Controller, 9, 19

modifications, 17

modular, 10, 250

Module, 8, 250, 251

modulo, 218

moiety, 53

molecular, 1, 4, 13, 14, 16, 17, 18,
25, 26, 248, 255, 256, 257, 258,
259

molecular/cellular, 257

molecular-scale, 249

molecule, 210

Monitor, 299

Monitoring, 250

monolithic, 8

monospace, 52, 53, 107, 108

Monospaced, 52, 107, 114, 146,
148, 234,237,268

mouse, 29, 37, 38, 245, 255, 266,
292

mouse-over, 29

mRNA, 29, 54, 106, 130, 210, 211,
258

multi-server, 223

multi-threaded, 223, 230

multi-tier, 2

multivariate, 250

mutation, 250

MVC, 9,10, 19, 35, 160

Myers, 82

MyServlet, 159

MySQL, 18, 19

mzXML, 17

nam, 230

Nature, 23, 37, 53, 84, 133, 205, 211

navigating, 9

navigational, 19

NCBI, 10, 21, 22, 25, 26, 27, 28, 29,
32,33, 64, 83, 84, 85, 92, 124,
129, 151, 153, 155, 156, 161,
162,166,170, 171,173, 177,
178,181, 186, 188, 189, 190,
198, 201, 204, 205, 213, 255,258

NCI, 6, 8,11, 14, 15,16, 17, 19, 20,
249, 250, 253, 255, 256, 259,
260, 289, 290, 291, 292

NCI thesaurus, 256, 292

331

NCICB, 8, 11, 14, 16, 21, 22, 255,
259, 290, 291

nculeotides, 53

network, 6,7, 8, 156

neuro/glioblastoma, 286

neuroscience, 258

new, 302, 303, 314, 315

next, 311

NHS, 290

NIH, 33, 249, 258, 260, 291

NLM, 161, 162

Nobel Laureate, 1

nomenclature, 54, 134, 205, 206,
207, 286

non-coding, 209, 211

non-Fasta, 137

non-redundant, 26

non-static, 43

non-target, 5

non-technical, 291

normal, 5, 124, 255

normalization, 14, 17

notation, 255

not-for-profit, 15

notification, 109, 275

notified, 88, 223

notifies, 10, 94

notify, 88, 282

notifyObservers, 88, 93, 94, 96, 97,
98,99, 100, 101, 228, 229, 277,
278,279, 280, 281, 282, 283, 284

novel, 25

nr, 65,71, 81,94, 113

n-tier, 8, 9, 20, 256

nuclear, 213

nucleic, 5, 255

nucleotide, 10, 27, 28, 33, 35, 48,
50, 53, 54, 56, 57, 64, 67, 68, 78,
79, 81, 83, 125, 132, 134, 152,
209, 211, 212, 214, 221, 247,257

nucleotides, 53, 133, 211

null, 49, 52, 61, 75, 76, 89, 90, 91,
93,94, 95, 96, 97, 99, 100, 101,
102, 105,111, 117,118, 119,
121, 122, 125,126, 127, 131,
132,134,135, 137, 138, 143,

332

147,148,172, 173, 174, 180,
181, 182, 183, 185, 186, 188,
189,191,192, 193, 198, 199,
201, 202, 203, 224, 227, 229,
230, 232, 234, 240, 273, 278

number, 8,9, 10, 11, 14, 16, 18, 20,
25, 29, 33, 35, 38, 53, 54, 55,
104, 124, 126, 128, 129, 131,
133,134, 136, 137, 140, 142,
145,155,157, 158, 161, 162,
165,211,214,217, 218, 243,
254,255,258, 260, 264, 276

nurse, 4

Object, 11, 12, 14, 15, 19, 36, 37,
38,42,43,46, 48, 49, 68, 86, 88,
89,90, 93, 94, 96, 99, 105, 120,
125, 147, 159, 160, 166, 169,
170,171,179, 181, 182, 223,
224,225, 226, 228, 229, 230,
231,232,234, 240, 251, 257,
258, 260, 262, 264, 265, 274,
276,282,283, 284,286

Object-Relational, 19

observable, 10, 88, 89,94, 112, 120,
139, 223, 235, 240, 267, 274,
275,277, 282,283

observe, 88

observer, 10, 36, 88, 112, 120, 121,
223,235,240, 263, 267,274

Octopus, 255, 292

ODI, 290

OGSA, 12,22

OGSA-DAI 12, 22

OMG, 15, 22

OMIM, 152,258

oncogene, 26, 81, 286

oncology, 12

one, 2,4,6,8,11,37,41, 43, 48, 84,
89,92, 108, 129, 144, 155, 156,
159, 160, 161, 165, 180, 205,
210,212,213, 221, 225, 230,
246, 254, 260, 282, 289

Ontologic, 8, 255

ontological, 257

Ontology, 14, 15, 22, 250, 252, 253,
257, 258, 280, 292

open-source, 14, 17, 295

operating, 3

operation, 3, 4,32, 33,45, 47, 80,
84,92, 95,157, 181, 221, 223,
226,231,314

optimal, 8

optimize, 221

option, 45, 93, 110, 125, 213, 214,
223,227, 298, 299

Oracle, 19

orchestrated, 211

order, 3, 19, 21, 85, 104, 167, 169,
170, 178, 254, 263, 275, 276,
295,312

organ, 258

Organisation, 17

organism, 16, 17, 26, 230, 240

organismal, 1

Organization, 7, §, 21, 183, 250,
256, 258, 280, 288

origin, 29

ORM, 19

0S, 16

Ostell, 293

output, 29, 32, 33, 34, 35, 125, 144,
149, 151, 155,156, 157, 158,
176,177,178, 186, 197, 203,
214,215,217, 220, 246, 312

outputStream, 94, 95, 98, 101, 102

overexpressed, 4, 290

overexpression, 4, 5

overload, 84

override, 169

overview, 20, 22

overwrite, 110, 111, 121

Pacific, 288

pack, 41, 60,72, 115,238, 263, 268

package, 35, 36, 39, 41, 42, 58, 70,
83,89,91,92,98,112, 129, 131,
151, 159, 160, 165, 169, 172,
173, 187,197, 221, 222, 223,
224,227,228,232,233, 235,
242,266, 276,283, 284, 285

paint, 37, 266

painting, 37, 47, 264

Pair, 144,218

pane, 40, 45, 46, 59, 72, 114, 237

panel, 65, 66,73, 74, 105, 114, 115,
116,117,176, 233, 234

paper, 252

paradigm, 2, 19, 165

param, 120, 240

parameter, 67, 68, 89, 129, 134, 146,
179, 180, 182

paramPanel, 66, 67,73, 74, 116,
117,239

parent, 42

parentheses, 194, 225

parenthesized, 196

parse, 55,95, 129, 178, 183, 242

Parsing, 130, 183, 184

participant, 252

partnership, 20, 250, 255, 290

password, 297, 301, 302, 303, 312,
314

path, 167, 168, 169, 259, 309, 312,
314

pathologic, 13

pathology, 5, 6, 13, 14, 18, 19, 251

pathway, 4, 13, 16, 17, 250, 257,
258, 260, 276,277,278, 286,
287,288

patient, 3, 4, 5, 7, 252, 255, 291

patient-based, 6

patient-focused, 4

pattern, 10, 13, 36, 194, 223, 263,
270,271,272,283,284

PDGF, 26

peak, 17

pepGene, 232,234

peptide, 212, 215, 218, 221, 231,
232,242,243, 246

peptideGene, 232

PEPTIDES, 243

percent, 1

Perl, 2

personalized medicine, 2

pharmacogenetic, 8

pharmacological, 249

phase, 218, 258, 260, 288

phenylalanine, 54

Phillips, 23, 292

333

physical, 8, 161, 257

physiological, 17

physiology, 5

pilot, 6, 250

Pipeline, 209, 212, 221, 246

plant, 2

platelet-derived, 26, 81

platform, 2, 6, 11, 12, 16, 18, 20, 21,
81,155, 158, 159, 258, 314

platform-agnostic, 2

platform-independent, 157

Plavsic, 82

plug, 53

PMID, 162,172, 174,177,181, 182,
183, 184, 188, 191, 198, 201

PNG, 168, 310

poly-A, 218

polyadenylation, 210

polymer, 53

polymerase, 211

polymerization, 210

Polymorphisms, 257

polypeptide, 210

Population, 250

Portability, 7

portable, 167

portal, 14, 15, 16, 255, 256, 257

position, 42, 46, 184, 257

POST, 83, 155, 157, 222

post-genomic, 3

post-translational, 17

precision, 4

preclinical, 161

predict, 210

predicted, 212, 214, 215, 218, 220,
221,231, 232, 242, 243, 245,
246, 247

Predicted peptides, 236

predicting, 213

prediction, 5, 10, 209, 212, 221,
231,242, 246, 247

predictive, 2, 17

prefix, 41

pre-mRNA, 213

Presentation, 8

334

principle, 9, 10, 12, 26, 160, 256,
314

print, 134, 174, 181, 190, 200, 214,
239,276

PRINT_OPTIONS, 236, 239

printer, 94, 95, 101, 102

printing, 243

PrintWriter, 170, 173, 190, 200

privacy, 7, 8

private, 7, 39, 40, 43, 55, 58, 59, 60,
65,67, 68,69,70,71,73,74,717,
87, 89,90, 91, 94, 96, 99, 101,
102,103,105, 111,113, 114,
115,117,119, 120, 121, 122,
123, 131, 132, 134, 135, 137,
138, 146, 147, 149, 178, 179,
181, 182,184, 185, 187, 188,
190, 191, 193, 195, 198, 200,
201,202, 203, 224, 228, 230,
232,233, 234,235, 236, 238,
239, 241, 263, 264, 265, 267,
268, 269, 273,274,277, 278,
283,284,285

probabilistic, 210

probabilities, 210

probability, 218

probe, 4, 255

process, 17, 26, 47, 48, 84, 88, 139,
158, 165, 169, 170, 210, 211,
223,225,230, 251, 254, 284,
295, 297, 298, 305, 311, 312

Processing, 204, 310

product, 12, 260

prognosis, 5

program, 3, 6, 12, 20, 27, 28, 29, 32,
33, 36, 46, 49, 64, 65, 66, 73, 81,
94,105,106, 115, 116, 137, 139,
149, 156, 158, 169, 176, 178,
180, 184, 186, 214, 249, 252,
255,259, 290, 297, 304, 307, 309

programmatic, 258

programmed, 1

Programming, 2, 16, 48, 49, 252,
256,257

Project, 1, 6, 11, 17, 20, 21, 22, 35,
160, 172, 206, 249, 252, 255,

256, 257,292, 295,311, 312,
314,315

proline, 54

promoter, 210,218

prompt, 104

propagate, 36

properties, 311, 312, 313

property, 89, 90, 91, 93, 223, 224,
227,252,311, 312,313

proprietary, 158

protect, 7

protected, 122,170, 173, 188, 198

protecting, 231

protection, 7

protein, 4, 5, 17, 25,27, 28, 33, 48,
53, 54, 56, 57, 58, 61, 62, 64, 65,
68,75,76,78, 80, 81, 82, 83,
105, 119, 133, 134, 135, 152,
161, 205, 211, 212, 257, 277,
280, 281, 290

protein-protein, 13, 17, 205

Proteome, 17

Proteomics, 1, 13, 17, 20, 249, 250

Protocol, 11, 14, 155, 156, 159, 250,
258

prototype, 9

Pruitt, 293

PSI-BLAST, 82

public, 7, 38, 39, 40, 41, 44, 45, 47,
49,51, 55, 58, 59, 60, 61, 62, 63,
70,71,74,75,717,78, 89, 90, 91,
92,93, 96, 98, 99, 105, 112, 114,
117,118,120, 121, 123, 124,
126,127, 131, 132, 135, 137,
138, 143, 146, 147, 149, 173,
187, 193, 198, 223, 224, 226,
227,228, 229,232,233, 234,
235, 236, 239, 240, 241, 243,
254,255,263, 264, 265, 266,
267, 268,270,271, 272, 273,
274, 275,276,2717,278, 279,
280, 281, 282, 283, 284, 285

publication, 183

publicly, 14, 33, 255, 256

Publisher, 36

Publish-Subscribe, 36

PubMed, 152, 155, 161, 162, 165,
166, 168, 169, 170, 171, 172,
173,174,175, 176,177, 178,
179, 180, 181, 182, 183, 186,
187, 188, 189, 190, 193, 197,
198, 199, 201, 204, 205, 206,
253,311,312, 314

purine, 53

purple, 195, 198

purpose, 295

put, 120, 156, 229, 240, 314

putative, 26

pyrimidine, 53

QBlast, 29, 83, 84, 85, 86, 92, 93,
139,151,152

quality, 7, 14, 20

Quantitative, 250

Query, 13, 15, 16, 18, 26, 28, 29, 85,
93,94, 97,99, 100, 103, 144,
152, 157,161,162,171, 172,
173,174, 180, 188, 198, 199,
204, 205,212,228, 230, 231,
291,292

question, 5

queue, 29, 30, 92, 221

quit, 36, 37, 38, 40, 46, 59, 71, 114,
236

radiation, 4

rational, 6

rationale, 80, 204, 212, 289

readability, 195

readable, 182, 204

reader, 95, 102, 131, 160, 172, 173,
174, 181, 182, 191, 201, 223

realm, 160

receptor, 286

refactored, 222

reference, 218

reflection, 224, 225, 226

regex, 96, 97, 100, 102, 135, 195,
203,204

region, 28, 218

register, 10, 38, 89, 90, 92, 99, 223,
224,226,227, 228

registering, 48

registries, 13, 251

335

registry, 256

regular expression, 55, 125, 129,
134,168,172, 183, 184, 194,
195, 196, 203

regulated, 211

regulation, 2, 17, 258

regulator, 29, 106, 211

regulatory, 209

relational, 12, 19

relationship, 258

reload, 312

reloading, 310

Remember, 223

repaint, 231

repainting, 42, 47, 48

Repetitive, 26

report, 147, 205, 260, 262, 263, 264,
265,270,271, 272, 275, 276,
277,278, 279, 280, 281, 282,
286,287, 288, 289

repositories, 155, 292

Repository, 11, 13, 14, 17, 19, 33,
253,254,256, 314,315

represent, 37, 50, 144, 183, 197, 255

representation, 6, 8,9, 15, 17, 250,
255,257,286, 288

representative, 13, 257

reproduce, 14

reproductive, 27

request, 10, 29, 84, 86, 87, 88, 93,
96, 99, 100, 155, 156, 158, 159,
166, 169, 170, 181, 223, 231

Requestldentifier, 86, 87, 96, 99,
102,112, 121

request-response, 165

required, 8, 65, 84, 104, 158, 160,
164, 168, 259, 262

requirement, 8

research, 2,3,4,5,6,7,8, 12, 14,
16,18, 20, 124, 151, 153, 155,
161, 204, 209, 248, 249, 250,
251,253,254, 255,256, 259,
286, 289, 290

researcher, 4, 6, 25, 26, 204

Resource, 17, 19, 47, 151, 155, 161,
162, 167, 168, 204, 205, 256, 258

336

respiratory, 27

respond, 2, 7, 36, 37, 38, 48, 80,
137,266

response, 5, 10, 32, 80, 86, 157, 158,
166, 169, 170

result, 1, 3, 45, 84, 87, 88, 95, 97,
98, 100, 101, 102, 111, 122, 146,
147, 165, 166, 181, 182, 210,
221,222,225, 229, 231, 232,
233, 234,241, 243, 262, 267,
270,273,276, 283

Retrieval, 161

retrieve, 16, 32,49, 51, 61,75, 105,
118,119, 124, 125, 126, 129,
135,137,151, 152, 157, 166,
172,174,178, 179, 180, 182,
188, 189, 190, 198, 199, 200,
205, 224, 225, 227,231, 260,
263,276,283, 289

return, 10, 44, 47, 56, 62, 63, 67, 74,
76,78, 84, 89, 90, 91, 93,94, 95,
96, 98, 99, 101, 102, 103, 105,
106,111,117,118, 119, 120,
121,122,123, 124,127, 131,
132, 134, 135, 143, 149, 155,
169,170, 178, 179, 180, 181,
183, 186, 190, 191, 193, 196,
201, 203, 204, 224, 225, 229,
230,231, 232, 235, 239, 243,
264, 269, 273,277,278, 279,
280, 281, 283, 284, 285

reusable, 158, 160, 256

reuse, 19, 221, 246

review, 158, 160, 252

revolutionize, 2

RFC, 155, 157, 206

ribonuclease, 211

ribonucleoprotein, 213

ribose, 53

ribosomal, 210

RID, 29, 84, 85, 86, 96,97, 98, 99,
100, 101, 102

right-clicking, 299

Riordan, 27, 81

RNA, 17,26, 53, 54, 55, 56, 58, 61,
62,67,69,71,75,76,77,78,

105,113,119, 122, 123, 124,
133,134,210, 211, 212

Robbins, 81

robust, 2, 4, 18

role, 4, 8, 12, 20, 21, 26, 36, 302,
312,313

Rommens, 81

root, 168, 169, 257

routing, 151, 155

Rozmabhel, 82

RProteomics, 13, 17, 250

rRNA, 210

RTOE, 84, 86, 96, 99, 102

Run, 32, 52, 215, 232, 234, 245,
260,261, 270,271,272

Runnable, 41, 47, 48, 63, 78, 120,
121, 124, 126, 127, 143, 146,
147, 228, 229, 230, 240, 241,
264,265, 266,270,271, 272,
273,274,275

Runtime, 2, 100, 101, 297

run-time, 2

Sahni, 23, 293

sarcoma, 26, 81

scalable, 8

scenario, 6, 12, 18

Schaefer, 23, 293

Schaffer, 82

schema, 167

schematic, 211

scheme, 10, 42, 45,260

Schriml, 293

Schuler, 153, 293

science, 1, 20, 23, 81, 82, 161, 204,
205, 249, 290

scientific, 1, 20, 161, 204

scientist, 249

scope, 7,11, 210

score, 29, 144, 149, 218

scoring, 25, 144, 149

screen, 298, 299

Scroll, 148, 297, 306

SDK, 8

Search, 10, 25, 26, 27, 28, 29, 30,
32,33, 35, 64, 80, 82, 84, 85, 86,
88,89,91,92,94, 104, 108, 109,

140, 141, 142, 144, 151, 161,
162,163, 165, 166,170, 171,
172,173,174, 176,177, 178,
179, 180, 182, 188, 190, 193,
194,195,197, 199, 201, 203,
204,231,232, 260, 261, 262,
263,264, 265, 270, 271, 272,
276,277,278, 279, 280, 281,
282,283, 284, 286, 288

SearchException, 262, 265, 271,
272,274,283, 284

secure, 6, 8, 12

Security, 8, 168, 252

self-contained, 10

self-describing, 10

semantic, 37, 255, 256

sentence, 194, 205

Sequeira, 293

sequence, 10, 13, 21, 23, 25, 26, 27,
28,29, 30, 31, 33, 34, 35, 39, 40,
41,46, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58,59, 61, 62, 63, 64,
67,68,72,75,76,717,78,79, 80,
81, 85,92, 93,94, 104, 105, 106,
107, 108,114,117, 118, 119,
120, 121, 123, 124, 125, 126,
127,128, 129, 130, 132, 133,
134,135,136, 137, 140, 141,
142, 143, 144, 148, 149, 152,
155,161,209, 210, 211, 212,
213,214,215, 219, 221, 223,
230,232, 237, 240, 243, 245,
247, 253, 256, 257, 258, 286

sequencing, 1, 2, 21, 23, 247, 249

sequential, 84

sequentially, 218

serine, 54

server, 10, 18, 19, 29, 32, 33, 64, 84,
93, 94, 96, 99, 155, 156, 157,
158,159, 160, 161, 165, 166,
167,168,169, 172,175, 176,
181, 189, 204, 213, 214, 225,
228,231,252, 267, 295, 297,
298,299, 300, 301, 302, 304,
305,310, 312, 313, 315

337

service, 7, 10, 11, 18, 27, 28, 29, 84,
85, 86, 87, 124, 139, 151, 158,
159, 161, 204, 205, 276, 301, 305

service-oriented architecture, 10, 12

servlet, 19, 155, 158, 159, 160, 165,
166, 167, 168, 169,170, 171,
172,173,174,175,176, 178,
179, 186, 187,193, 197, 198,
204, 206, 295, 313

Servlet/JSP, 204

ServletException, 170, 173, 187,
188,197, 198

session, 156

Set, 74

setter, 87

Setting, 204,215

Setup, 297

shutdown, 299, 304

shutdown.bat., 304

signal, 5, 17,213, 218

signaling, 26

signalling, 258

signals, 209, 210,211, 212

signature, 5, 47, 170, 262

silo, 20

simian, 81

similarity, 25, 26

single-cell, 251

Single-exon, 218

Sirotkin, 293

six-frame, 28

snRNP, 213

SO, 183, 184, 188, 198

SOA, 10,11

SOAP, 11, 258, 292

software, 2, 3, 8,12, 16, 17, 18, 20,
21,23, 32, 36, 155, 157, 160,
175, 206, 247, 252,256, 292,
295,297, 304,314,316

Solaris, 16

solution, 8, 19, 205

source, 14, 17, 35, 36, 37, 129, 160,
183, 205, 250, 254, 255, 256,
258,278

Souvorov, 293

space, 2,21,42

338

span, 162

specimen, 251

spectra, 13

spectrometric, 17

spectrometry, 17

spectrum, 2

speed, 7, 25

splice, 210, 213, 218

splicing, 211, 212

springboard, 289

SQL, 19, 254

src, 35, 310

stage, 64, 106, 140

staging, 14

standard, 3, 5, 10, 11, 15, 17, 18, 81,
155,160, 169, 184, 251, 254,
256,292

standardization, 3, 252, 256

standardize, 17

Standards, 11, 17, 19, 253, 256, 292

standards-based, 6, 10, 14

Starchenko, 293

start-up, 139, 140

State, 3, 21, 68, 170, 260, 262, 265

statement, 92, 226

States, 249

static, 39,41, 43,47, 55, 58, 59, 62,
63, 65, 68,70,71,77,78, 87, 89,
90,91, 92,93, 99, 103, 113, 123,
124,131,132, 134, 135, 158,
184,187, 188, 193, 195, 198,
224,225,226,227, 228, 233,
234,235,236, 241, 243, 264,
266,267,275, 277, 283, 285

statistical, 6, 13, 17, 81, 157, 250

statistics, 161, 250

status, 84, 85, 94, 97, 98, 100, 101,
109, 139, 140, 141, 142, 143,
157, 223, 235, 260, 265, 275,
282,284,288

statusBar, 263, 265, 267, 268,274

step-by-step, 36

step-wise, 32

stimuli, 5

strand, 210, 213,217, 218

Strategic, 250, 252, 290

Strategy, 84,204, 254

stratification, 5

streamline, 6

streamlining, 23, 292

strict, 7

String, 39, 41, 43, 44, 45, 47, 49, 51,
52,55, 58,61, 62,63, 65, 68, 70,
71,73,75,76,71,78, 89,90, 91,
93,94, 95,96, 97, 99, 100, 101,
102, 103, 105, 111,113, 115,
117,118,119, 120, 121, 122,
123,124,126, 127,129, 131,
132,134,135, 137, 138, 143,
146, 147, 148, 149, 172, 173,
174,179, 180, 181, 182, 183,
184, 185, 186, 187, 188, 189,
190, 191, 192, 193, 194, 195,
196, 198, 199, 201, 202, 203,
224,227,228,229, 230, 232,
234, 235, 236, 241, 243, 254,
262,266,267, 270,271,272,
273,275,278, 283, 284, 285, 302

StringBuffer, 94, 97, 100, 103, 105,
117,120, 121, 131, 147, 148,
171,173,178, 180, 181, 182,
185, 188, 189, 190, 191, 193,
194, 195, 198, 199, 200, 201,
202, 203, 230, 243, 264, 265,
270,271, 272,273,274, 276,
277,278,279, 280, 281, 282

stringency, 64

structural, 26, 209

structure, 20, 21, 26, 28, 32, 35, 87,
88,167, 168,174,175, 209, 213,
215,222,247, 250, 261, 310, 311

Struts, 19, 21

subclass, 42

sub-components, 12

submission, 29, 84, 141, 250

submit, 32, 33, 37, 83, 92, 104, 108,
115,124,166, 170, 172, 237,250

sub-optimal, 213

Subscriber, 36

sub-serve, 14

subst, 103, 195, 196, 204

substitute, 196

substitution, 196

substrate, 255

substring, 52, 61, 75, 118, 119, 121,
127,132,134, 135, 185, 186,
191, 192, 193, 196, 202, 203, 243

sub-strings, 194

subsumed, 258

sugar, 53

Sun Microsystem, 158, 159

super, 40, 42, 44, 59, 63, 71,91, 92,
114,122, 225,227, 233, 236,
263,267, 282, 284, 285

superclass, 41, 42, 44

superfamily, 26

surgical, 14

survival, 26

susceptibility, 2

susceptible, 2

Suzek, 153,293

SWING, 16, 21, 32, 36, 38, 39, 41,
42,43, 45, 58,70, 80, 83, 112,
233,235, 261, 262, 263, 264, 267

SwingBlast, 32, 34, 35, 36, 37, 39,
41,43,45, 46,48, 49, 50, 53, 58,
63, 64, 69, 70, 80, 81, 83, 86, 88,
93, 103, 104, 106, 108, 112, 113,
124,126,127, 132,134, 136,
137,139, 141, 143, 149, 152,
212,221,222,232,246, 315

swingBlastMenu, 40, 46, 59, 71, 72,
114,236

SwingCaBIO, 261, 263, 266, 267,
275,282

SwingGenscan, 221, 222, 235, 236,
239, 240, 241, 242, 243, 244,
246, 247

SwingGenScan:, 221

Swiss-Prot, 152, 254

switch, 61, 76, 119

symbol, 48, 205, 260, 286

synchronization, 231

synchronize, 230

synchronized, 97, 99, 100, 224, 226,
229,231,265, 274

Syntax, 254

synthesis, 17,210

339

synthesize, 210

system, 3, 5,7, 10, 13, 14,17, 19,
37,38,60,74,76, 83, 84, 89, 90,
91, 92,93,97,99, 103, 117, 120,
125, 126, 127, 140, 161, 181,
182, 189, 190, 199, 200, 223,
224,227,228, 229, 239, 250,
251,275, 283, 306, 309, 314, 315

systematic, 17, 255

tag, 129, 160, 162, 184, 195, 204,
254,311,314, 315

target, 26, 254, 257, 260, 277, 278,
279,281, 311,312,313,314

targeted, 257

TATA, 213,218

Tatusov, 293

Tatusova, 293

TAX, 288

Taxol, 288, 289

taxon, 257

Taxus, 288

TBI.ASTN, 28, 64, 68, 78

TBLASTX, 28, 64, 67, 68,78

TBPT, 6, 13, 14, 19

TCP/IP, 156

technical, 291

technological, 21, 289

technologies, 2, 3, 4, 6, 8, 10, 11,
14,21, 155, 158, 160, 165, 204,
249, 251, 253, 258, 260, 289,
291, 295

technology, 1, 18, 19, 20, 158, 204,
206, 257, 289, 290

technology-based, 159

telnet, 156

template, 210

Terminal, 218

termination, 210, 218

terminologies, 12

terminology, 15,42, 160

terms, 18, 84, 85, 161, 162, 180,
193,194, 195, 197, 203, 204,
210,211, 257, 258, 260, 280

testimony, 290

text, 7, 11, 14, 37, 38, 39, 46, 48, 49,
50, 51,61,62,63,75,76,78,

340

104, 105, 106, 109, 112, 118,
125,126,127, 128, 129, 132,
134, 135,137, 138, 143, 147,
156, 170, 173, 178, 190, 194,
195, 196, 200, 204, 215, 232,
240, 241, 254, 260, 263, 264,
265,277

textArea, 146, 147,234, 235

thale cress, 2

therapeutic, 2, 5, 257, 258, 260, 288,

289

therapies, 249

therapy, 2, 5, 15, 258, 259

this, 295, 297, 300, 301, 302, 306,
307,309,312

thoracic, 4

thread, 37, 47, 48, 90, 120, 127, 147,

221,223, 225,229, 230, 231,
241, 264, 265, 266, 271, 272,
273,274

threonine, 54

threshold, 55, 144, 214

throw, 89, 90, 95, 96, 98, 99, 101,
102, 131, 170, 189, 224, 225,
227,229, 231, 284

Throwable, 91, 121, 122, 193, 227,
228,229,284, 285

thymine, 53, 54

Tiles, 19

time, 297, 306

tissue, 6, 13, 18, 19, 251, 258, 290,
291

Tissue Banks, 6, 251

TITLE, 170, 171, 173, 178, 187,
190, 198, 200, 201

token, 231

Tomcat, 160, 165, 169, 175, 176,
204, 258, 295, 296, 297, 298,
299, 300, 301, 302, 303, 304,
305, 312,313, 314, 316

Tool, 10, 12, 13, 14,17, 19, 25, 82,
151, 165, 175, 250, 255, 301,
302, 306

Toolkit, 12, 32, 41, 60, 72, 115, 238,

264, 268
Tools, 6,250, 251

toxicity, 5

track, 94, 231

transcript, 211

transcription, 13, 17,210, 211

transcriptional, 212

transcriptomics, 249

transduction, 17

transfer, 210

transform, 10, 21, 254

transformation, 26, 254

transforming, 160, 254

transition, 210

translated, 28,211, 212

translation, 17, 162, 210

Translational, 4, 12, 212, 250, 254,
259

transmembrane, 29, 106, 211

Transmission, 156

transparent, 8, 9, 85, 221, 225, 231

transport, 27, 254

Transportation, 254

trap, 181

TrAPSS, 250

treatment, 2, 5,7, 210, 249, 255,
257,265, 288, 290

tree, 257, 288

trend, 4

Trial, 6, 250, 257, 258, 260, 279,
280

triggered, 38, 48

triggering, 37

trimming, 129

tRNA, 210

true, 40, 41, 46, 59, 60, 67, 68, 69,
71,72,73,77,90, 95,101, 114,
115,117,118, 123,126, 132,
135,137, 143, 147, 189, 224,
225,226,228, 234, 236, 237,
238,268

truncated, 157

try, 61,75, 76, 90, 91, 93, 94, 95,
96, 97, 98,99, 100, 101, 102,
103,113,119, 120, 125, 126,
131,132,135, 143, 181, 182,
189, 193, 199, 200, 209, 224,
228,229, 230, 240, 241, 265,

266,270,271, 272,274, 275,
277,278,279, 280, 281, 283,
284,303

try-catch, 170, 181

tryptophan, 54

tumor, 13, 14, 26, 251

tutorial, 81

tyrosine, 54

UDDI, 11

UL 9

UML, 12, 33, 34, 84, 86, 258

uncompress, 307

ungapped, 25

UniGene, 152, 153, 254, 258,260

unique, 84, 85, 162, 214, 218, 231,
258

UniSTS, 254, 292

unit, 257

Universal, 11

University, 212

Unix, 158, 315

unorganized, 10

unzip, 259

unzipping, 307

upload, 81

upper-case, 205

uracil, 53

URI, 167

uridine, 54

URL, 8, 15, 83, 95, 98, 101, 125,
129,131, 157, 166, 168, 169,
171,172,173, 176, 180, 181,
182,187,189, 191, 198, 199,
201, 205, 228, 312,314

URLAPI, 83, 85

usage, 161

USB, 38

User-input, 180

user-supplied, 178, 188

valid, 33, 63, 80, 129, 131, 132, 134,
135, 160, 231, 261

validate, 4, 9

validation, 18, 132, 133, 134, 136,
179, 180, 291

validity, 134

valine, 54

341

variable, 43, 178, 180, 254

VCDE, 252

vendor, 315

Venter, 23

version, 12, 25, 39, 41, 43, 44, 58,
63,64,69,70, 83,103, 104, 106,
112,113,126, 127,137,139,
143,156,170, 171,172, 173,
176,178, 179, 186, 187, 193,
197, 221, 222, 235, 259, 306,
314,315

vertebrate, 81, 213, 249

vertical, 48, 50

veterinary, 161

VI, 249

Virtual, 47, 158, 169

virus, 26, 81, 161

visibility, 195

visual, 9, 19, 250

visualization, 7, 13, 17, 18, 35, 250

visualizing, 13, 14, 16, 18

vocabularies, 3, 11, 14, 252, 257

Vocabulary, 19, 20, 22, 162, 252,
253,256,258

void, 38, 41, 45,47, 49, 51, 59, 60,
61,63,67,68,69,71,74,75, 77,
78,89,90,91, 105,111, 114,
117,118,119, 120, 121, 122,
123,124, 126, 127, 135, 137,
138, 143, 146, 147, 169, 170,
173, 188, 193, 198, 200, 224,
226, 228, 232,233,234, 236,
239, 240, 241, 263, 264, 265,
266,267, 268,270,271, 272,
273,274,275, 276,277, 278,
279, 280, 281, 282, 284

voluntary, 250

von Eschenbach, 250

v-sis, 26, 81

Wagner, 153, 293

WAR, 168, 169, 295, 310, 311

warehouse, 254

warn, 132, 134, 136

Warzel, 23, 292

Watson, 1

342

web, 2,6,7,8,10,11, 12, 14, 15,
16,17, 18, 19, 129, 155, 156,
158, 160, 162, 166, 167, 168,
169, 204, 205, 214, 258, 295,
296, 299, 301, 304, 310, 311,
312,313,314

web.xml, 310, 311

web-based, 7, 18, 19, 25, 28, 155,
165

WEB-INF, 168, 311,313

webpage, 177

Webserver, 299, 300, 302

website, 8, 15, 17, 21, 125, 159,
160, 161, 175, 205, 206, 250,
259, 286, 306, 309

well-defined, 167

well-known, 288

well-structured, 252

Wheeler, 293

widget, 63, 137

wild-card, 288

wildcards, 36

window, 37, 41, 42, 43, 48, 60, 72,
115, 139, 144, 221, 238, 246,
299, 303, 305

WindowAdapter, 147

Windowing, 32

Windows, 16, 245, 299, 309

Wizard, 297

Workspace, 6, 13, 250, 251, 252

worm, 2

wrap, 85, 158

wrapped, 42, 105, 129

write, 32, 39, 55, 80, 95, 101, 102,
125,170, 180

WSDL, 11

WWW, 21, 155, 156, 253

XHTML, 156

XML, 10, 11, 12, 97, 98, 100, 101,
103, 144, 145, 156, 168, 205,
254,258, 310,314

XML-encoded, 11

XP, 16

Yaschenko, 293

zebrafish, 2

zero, 54

Zhang, 82

Zielenski, 82

